Properties

Label 10-1150e5-1.1-c3e5-0-3
Degree $10$
Conductor $2.011\times 10^{15}$
Sign $-1$
Analytic cond. $1.43820\times 10^{9}$
Root an. cond. $8.23724$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $5$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 10·2-s − 5·3-s + 60·4-s + 50·6-s + 3·7-s − 280·8-s − 13·9-s − 26·11-s − 300·12-s + 61·13-s − 30·14-s + 1.12e3·16-s − 231·17-s + 130·18-s + 74·19-s − 15·21-s + 260·22-s − 115·23-s + 1.40e3·24-s − 610·26-s + 29·27-s + 180·28-s + 37·29-s + 220·31-s − 4.03e3·32-s + 130·33-s + 2.31e3·34-s + ⋯
L(s)  = 1  − 3.53·2-s − 0.962·3-s + 15/2·4-s + 3.40·6-s + 0.161·7-s − 12.3·8-s − 0.481·9-s − 0.712·11-s − 7.21·12-s + 1.30·13-s − 0.572·14-s + 35/2·16-s − 3.29·17-s + 1.70·18-s + 0.893·19-s − 0.155·21-s + 2.51·22-s − 1.04·23-s + 11.9·24-s − 4.60·26-s + 0.206·27-s + 1.21·28-s + 0.236·29-s + 1.27·31-s − 22.2·32-s + 0.685·33-s + 11.6·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{5} \cdot 5^{10} \cdot 23^{5}\right)^{s/2} \, \Gamma_{\C}(s)^{5} \, L(s)\cr=\mathstrut & -\,\Lambda(4-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{5} \cdot 5^{10} \cdot 23^{5}\right)^{s/2} \, \Gamma_{\C}(s+3/2)^{5} \, L(s)\cr=\mathstrut & -\,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(10\)
Conductor: \(2^{5} \cdot 5^{10} \cdot 23^{5}\)
Sign: $-1$
Analytic conductor: \(1.43820\times 10^{9}\)
Root analytic conductor: \(8.23724\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(5\)
Selberg data: \((10,\ 2^{5} \cdot 5^{10} \cdot 23^{5} ,\ ( \ : 3/2, 3/2, 3/2, 3/2, 3/2 ),\ -1 )\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 + p T )^{5} \)
5 \( 1 \)
23$C_1$ \( ( 1 + p T )^{5} \)
good3$C_2 \wr S_5$ \( 1 + 5 T + 38 T^{2} + 226 T^{3} + 1262 T^{4} + 4040 T^{5} + 1262 p^{3} T^{6} + 226 p^{6} T^{7} + 38 p^{9} T^{8} + 5 p^{12} T^{9} + p^{15} T^{10} \)
7$C_2 \wr S_5$ \( 1 - 3 T + 771 T^{2} - 3144 T^{3} + 371058 T^{4} - 2380138 T^{5} + 371058 p^{3} T^{6} - 3144 p^{6} T^{7} + 771 p^{9} T^{8} - 3 p^{12} T^{9} + p^{15} T^{10} \)
11$C_2 \wr S_5$ \( 1 + 26 T + 2418 T^{2} + 113386 T^{3} + 4059013 T^{4} + 212955280 T^{5} + 4059013 p^{3} T^{6} + 113386 p^{6} T^{7} + 2418 p^{9} T^{8} + 26 p^{12} T^{9} + p^{15} T^{10} \)
13$C_2 \wr S_5$ \( 1 - 61 T + 10540 T^{2} - 529280 T^{3} + 45358160 T^{4} - 1736952500 T^{5} + 45358160 p^{3} T^{6} - 529280 p^{6} T^{7} + 10540 p^{9} T^{8} - 61 p^{12} T^{9} + p^{15} T^{10} \)
17$C_2 \wr S_5$ \( 1 + 231 T + 2463 p T^{2} + 4861940 T^{3} + 483550256 T^{4} + 36207317242 T^{5} + 483550256 p^{3} T^{6} + 4861940 p^{6} T^{7} + 2463 p^{10} T^{8} + 231 p^{12} T^{9} + p^{15} T^{10} \)
19$C_2 \wr S_5$ \( 1 - 74 T + 12546 T^{2} - 283034 T^{3} + 11332093 T^{4} + 2967552288 T^{5} + 11332093 p^{3} T^{6} - 283034 p^{6} T^{7} + 12546 p^{9} T^{8} - 74 p^{12} T^{9} + p^{15} T^{10} \)
29$C_2 \wr S_5$ \( 1 - 37 T + 49794 T^{2} - 4360786 T^{3} + 1471271970 T^{4} - 188914249194 T^{5} + 1471271970 p^{3} T^{6} - 4360786 p^{6} T^{7} + 49794 p^{9} T^{8} - 37 p^{12} T^{9} + p^{15} T^{10} \)
31$C_2 \wr S_5$ \( 1 - 220 T + 92656 T^{2} - 17419261 T^{3} + 4814097217 T^{4} - 698419034622 T^{5} + 4814097217 p^{3} T^{6} - 17419261 p^{6} T^{7} + 92656 p^{9} T^{8} - 220 p^{12} T^{9} + p^{15} T^{10} \)
37$C_2 \wr S_5$ \( 1 + 220 T + 216009 T^{2} + 35499624 T^{3} + 19855535026 T^{4} + 2472537970040 T^{5} + 19855535026 p^{3} T^{6} + 35499624 p^{6} T^{7} + 216009 p^{9} T^{8} + 220 p^{12} T^{9} + p^{15} T^{10} \)
41$C_2 \wr S_5$ \( 1 - 112 T + 246093 T^{2} - 37957947 T^{3} + 661636213 p T^{4} - 4163193534223 T^{5} + 661636213 p^{4} T^{6} - 37957947 p^{6} T^{7} + 246093 p^{9} T^{8} - 112 p^{12} T^{9} + p^{15} T^{10} \)
43$C_2 \wr S_5$ \( 1 + 97 T + 247163 T^{2} + 9219484 T^{3} + 28200088918 T^{4} + 279343826070 T^{5} + 28200088918 p^{3} T^{6} + 9219484 p^{6} T^{7} + 247163 p^{9} T^{8} + 97 p^{12} T^{9} + p^{15} T^{10} \)
47$C_2 \wr S_5$ \( 1 + 370 T + 560732 T^{2} + 154409339 T^{3} + 120663232045 T^{4} + 24084178915350 T^{5} + 120663232045 p^{3} T^{6} + 154409339 p^{6} T^{7} + 560732 p^{9} T^{8} + 370 p^{12} T^{9} + p^{15} T^{10} \)
53$C_2 \wr S_5$ \( 1 + 1224 T + 849169 T^{2} + 349422432 T^{3} + 106131613898 T^{4} + 31335599759280 T^{5} + 106131613898 p^{3} T^{6} + 349422432 p^{6} T^{7} + 849169 p^{9} T^{8} + 1224 p^{12} T^{9} + p^{15} T^{10} \)
59$C_2 \wr S_5$ \( 1 + 181 T + 819180 T^{2} + 125833479 T^{3} + 302586825665 T^{4} + 37541024009080 T^{5} + 302586825665 p^{3} T^{6} + 125833479 p^{6} T^{7} + 819180 p^{9} T^{8} + 181 p^{12} T^{9} + p^{15} T^{10} \)
61$C_2 \wr S_5$ \( 1 - 1574 T + 1975365 T^{2} - 1581962520 T^{3} + 1083354883294 T^{4} - 553631174759044 T^{5} + 1083354883294 p^{3} T^{6} - 1581962520 p^{6} T^{7} + 1975365 p^{9} T^{8} - 1574 p^{12} T^{9} + p^{15} T^{10} \)
67$C_2 \wr S_5$ \( 1 - 435 T + 241931 T^{2} - 192411872 T^{3} + 102130758294 T^{4} - 1095541382282 T^{5} + 102130758294 p^{3} T^{6} - 192411872 p^{6} T^{7} + 241931 p^{9} T^{8} - 435 p^{12} T^{9} + p^{15} T^{10} \)
71$C_2 \wr S_5$ \( 1 + 30 T + 1197216 T^{2} + 145823515 T^{3} + 687466453625 T^{4} + 91054818733334 T^{5} + 687466453625 p^{3} T^{6} + 145823515 p^{6} T^{7} + 1197216 p^{9} T^{8} + 30 p^{12} T^{9} + p^{15} T^{10} \)
73$C_2 \wr S_5$ \( 1 + 2180 T + 2734129 T^{2} + 2362943775 T^{3} + 1695229971401 T^{4} + 1082670505912667 T^{5} + 1695229971401 p^{3} T^{6} + 2362943775 p^{6} T^{7} + 2734129 p^{9} T^{8} + 2180 p^{12} T^{9} + p^{15} T^{10} \)
79$C_2 \wr S_5$ \( 1 - 609 T + 1833841 T^{2} - 567237892 T^{3} + 1325523479672 T^{4} - 250311566358774 T^{5} + 1325523479672 p^{3} T^{6} - 567237892 p^{6} T^{7} + 1833841 p^{9} T^{8} - 609 p^{12} T^{9} + p^{15} T^{10} \)
83$C_2 \wr S_5$ \( 1 + 2018 T + 3746964 T^{2} + 4288910864 T^{3} + 4548945561579 T^{4} + 3553998955652964 T^{5} + 4548945561579 p^{3} T^{6} + 4288910864 p^{6} T^{7} + 3746964 p^{9} T^{8} + 2018 p^{12} T^{9} + p^{15} T^{10} \)
89$C_2 \wr S_5$ \( 1 + 1663 T + 4502861 T^{2} + 4941279904 T^{3} + 7067203139890 T^{4} + 5315152786232562 T^{5} + 7067203139890 p^{3} T^{6} + 4941279904 p^{6} T^{7} + 4502861 p^{9} T^{8} + 1663 p^{12} T^{9} + p^{15} T^{10} \)
97$C_2 \wr S_5$ \( 1 - 1274 T + 4204265 T^{2} - 3940293832 T^{3} + 7336467257286 T^{4} - 5149129381002076 T^{5} + 7336467257286 p^{3} T^{6} - 3940293832 p^{6} T^{7} + 4204265 p^{9} T^{8} - 1274 p^{12} T^{9} + p^{15} T^{10} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{10} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−5.92094340353061622819243376531, −5.89394038801447478352882774056, −5.69593185255461908120525158961, −5.69132484267379798196828534892, −5.64895342968117731870482481246, −5.06596647400835798946257132387, −4.77971792801442340956411962363, −4.75205908310516560545933744095, −4.69049530202617096648720489480, −4.31029334352597233549777706537, −4.10792048175304136694517745843, −3.61807976075444855809004764366, −3.61419051461859676882284269341, −3.27762426248709137432515635730, −3.25337416053709837774527295623, −2.70944987903838765465218237153, −2.64850916121615149725246579389, −2.45662840276622133926522859965, −2.25055615071134716387833664082, −2.07108592130977408733327682841, −1.58604270428397208050931325882, −1.46854659375956602906049376366, −1.37483762505121123588513898934, −1.05639391955626002714414976428, −0.866414233603579876252090267433, 0, 0, 0, 0, 0, 0.866414233603579876252090267433, 1.05639391955626002714414976428, 1.37483762505121123588513898934, 1.46854659375956602906049376366, 1.58604270428397208050931325882, 2.07108592130977408733327682841, 2.25055615071134716387833664082, 2.45662840276622133926522859965, 2.64850916121615149725246579389, 2.70944987903838765465218237153, 3.25337416053709837774527295623, 3.27762426248709137432515635730, 3.61419051461859676882284269341, 3.61807976075444855809004764366, 4.10792048175304136694517745843, 4.31029334352597233549777706537, 4.69049530202617096648720489480, 4.75205908310516560545933744095, 4.77971792801442340956411962363, 5.06596647400835798946257132387, 5.64895342968117731870482481246, 5.69132484267379798196828534892, 5.69593185255461908120525158961, 5.89394038801447478352882774056, 5.92094340353061622819243376531

Graph of the $Z$-function along the critical line