L(s) = 1 | + (−0.430 − 0.902i)2-s + (−0.668 − 0.744i)3-s + (−0.628 + 0.777i)4-s + (−0.986 − 0.161i)5-s + (−0.383 + 0.923i)6-s + (0.100 + 0.994i)7-s + (0.972 + 0.232i)8-s + (−0.107 + 0.994i)9-s + (0.279 + 0.960i)10-s + (0.993 − 0.116i)11-s + (0.998 − 0.0520i)12-s + (−0.597 + 0.801i)13-s + (0.854 − 0.519i)14-s + (0.538 + 0.842i)15-s + (−0.209 − 0.977i)16-s + (0.763 − 0.646i)17-s + ⋯ |
L(s) = 1 | + (−0.430 − 0.902i)2-s + (−0.668 − 0.744i)3-s + (−0.628 + 0.777i)4-s + (−0.986 − 0.161i)5-s + (−0.383 + 0.923i)6-s + (0.100 + 0.994i)7-s + (0.972 + 0.232i)8-s + (−0.107 + 0.994i)9-s + (0.279 + 0.960i)10-s + (0.993 − 0.116i)11-s + (0.998 − 0.0520i)12-s + (−0.597 + 0.801i)13-s + (0.854 − 0.519i)14-s + (0.538 + 0.842i)15-s + (−0.209 − 0.977i)16-s + (0.763 − 0.646i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 967 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.0808 + 0.996i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 967 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.0808 + 0.996i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.1659935177 + 0.1530764643i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.1659935177 + 0.1530764643i\) |
\(L(1)\) |
\(\approx\) |
\(0.4669357940 - 0.1725875109i\) |
\(L(1)\) |
\(\approx\) |
\(0.4669357940 - 0.1725875109i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 967 | \( 1 \) |
good | 2 | \( 1 + (-0.430 - 0.902i)T \) |
| 3 | \( 1 + (-0.668 - 0.744i)T \) |
| 5 | \( 1 + (-0.986 - 0.161i)T \) |
| 7 | \( 1 + (0.100 + 0.994i)T \) |
| 11 | \( 1 + (0.993 - 0.116i)T \) |
| 13 | \( 1 + (-0.597 + 0.801i)T \) |
| 17 | \( 1 + (0.763 - 0.646i)T \) |
| 19 | \( 1 + (0.549 + 0.835i)T \) |
| 23 | \( 1 + (-0.957 + 0.288i)T \) |
| 29 | \( 1 + (-0.844 - 0.536i)T \) |
| 31 | \( 1 + (-0.555 - 0.831i)T \) |
| 37 | \( 1 + (-0.999 + 0.0325i)T \) |
| 41 | \( 1 + (0.203 + 0.979i)T \) |
| 43 | \( 1 + (0.266 + 0.963i)T \) |
| 47 | \( 1 + (0.994 + 0.103i)T \) |
| 53 | \( 1 + (-0.829 + 0.557i)T \) |
| 59 | \( 1 + (-0.0812 - 0.996i)T \) |
| 61 | \( 1 + (-0.949 - 0.313i)T \) |
| 67 | \( 1 + (-0.442 - 0.896i)T \) |
| 71 | \( 1 + (0.996 - 0.0779i)T \) |
| 73 | \( 1 + (-0.829 - 0.557i)T \) |
| 79 | \( 1 + (0.505 + 0.862i)T \) |
| 83 | \( 1 + (-0.815 - 0.579i)T \) |
| 89 | \( 1 + (0.997 + 0.0649i)T \) |
| 97 | \( 1 + (-0.900 + 0.433i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−22.09213657786786777532863435137, −20.506089086632073797877249272709, −19.933414648757695910846408042984, −19.24727352802246448018197614757, −18.10629713161817850116934086354, −17.35229929180767493062432553505, −16.84025596995168679905216337971, −16.089098747880438954721670116775, −15.404190478243892032076607463087, −14.63168084460054965139242707761, −14.07284963587540958536334175742, −12.63574893015190922936378060415, −11.83944069536406156253964921859, −10.704514895136483446551390490724, −10.392137125213651177686835531420, −9.35425924900627695808723565138, −8.49001094410790458584581785170, −7.35082088005124783176109310464, −7.02217324067261283206954408923, −5.82726445878617538703194894531, −4.97207509736648257699330090024, −4.06843225471419467511547490765, −3.508352788435766232259783672889, −1.220886626084544548720537600017, −0.1529545118676245044536348051,
1.26734562183163515532417019557, 2.08674992780861193657569703064, 3.27716811821530529148615458339, 4.27948045689479591801376829265, 5.22852049618630314783686400013, 6.29899641637633173581936892693, 7.5809105281801705931360947981, 7.89092522035400404921468183453, 9.08580764450542714963594053197, 9.70494318624892481983692122623, 11.08103432618447751697845278739, 11.70185180040590662641907062710, 12.07647669369396616418917399688, 12.60091791798974035862848272115, 13.85757562178733189139398018270, 14.58187243085268546361747172067, 15.965353888837047183142253904069, 16.62858280961979330706230505647, 17.27919151437588989775859666246, 18.47024127488792502967375879005, 18.693664754803953867906705654422, 19.42748972520074512139116753782, 20.12253359436826679099465169287, 21.12122117560905087264494379669, 22.11967031587313870092694147555