Dirichlet series
L(s) = 1 | + (0.389 − 0.921i)2-s + (0.999 − 0.0195i)3-s + (−0.696 − 0.717i)4-s + (−0.763 − 0.646i)5-s + (0.371 − 0.928i)6-s + (0.998 − 0.0585i)7-s + (−0.932 + 0.362i)8-s + (0.999 − 0.0390i)9-s + (−0.892 + 0.451i)10-s + (−0.184 + 0.982i)11-s + (−0.710 − 0.703i)12-s + (0.184 + 0.982i)13-s + (0.334 − 0.942i)14-s + (−0.775 − 0.631i)15-s + (−0.0292 + 0.999i)16-s + (−0.442 − 0.896i)17-s + ⋯ |
L(s) = 1 | + (0.389 − 0.921i)2-s + (0.999 − 0.0195i)3-s + (−0.696 − 0.717i)4-s + (−0.763 − 0.646i)5-s + (0.371 − 0.928i)6-s + (0.998 − 0.0585i)7-s + (−0.932 + 0.362i)8-s + (0.999 − 0.0390i)9-s + (−0.892 + 0.451i)10-s + (−0.184 + 0.982i)11-s + (−0.710 − 0.703i)12-s + (0.184 + 0.982i)13-s + (0.334 − 0.942i)14-s + (−0.775 − 0.631i)15-s + (−0.0292 + 0.999i)16-s + (−0.442 − 0.896i)17-s + ⋯ |
Functional equation
Invariants
Degree: | \(1\) |
Conductor: | \(967\) |
Sign: | $0.606 - 0.795i$ |
Analytic conductor: | \(103.918\) |
Root analytic conductor: | \(103.918\) |
Motivic weight: | \(0\) |
Rational: | no |
Arithmetic: | yes |
Character: | $\chi_{967} (677, \cdot )$ |
Primitive: | yes |
Self-dual: | no |
Analytic rank: | \(0\) |
Selberg data: | \((1,\ 967,\ (1:\ ),\ 0.606 - 0.795i)\) |
Particular Values
\(L(\frac{1}{2})\) | \(\approx\) | \(3.146654815 - 1.557799634i\) |
\(L(\frac12)\) | \(\approx\) | \(3.146654815 - 1.557799634i\) |
\(L(1)\) | \(\approx\) | \(1.508848714 - 0.7876721283i\) |
\(L(1)\) | \(\approx\) | \(1.508848714 - 0.7876721283i\) |
Euler product
$p$ | $F_p(T)$ | |
---|---|---|
bad | 967 | \( 1 \) |
good | 2 | \( 1 + (0.389 - 0.921i)T \) |
3 | \( 1 + (0.999 - 0.0195i)T \) | |
5 | \( 1 + (-0.763 - 0.646i)T \) | |
7 | \( 1 + (0.998 - 0.0585i)T \) | |
11 | \( 1 + (-0.184 + 0.982i)T \) | |
13 | \( 1 + (0.184 + 0.982i)T \) | |
17 | \( 1 + (-0.442 - 0.896i)T \) | |
19 | \( 1 + (0.638 + 0.769i)T \) | |
23 | \( 1 + (-0.316 - 0.948i)T \) | |
29 | \( 1 + (-0.592 - 0.805i)T \) | |
31 | \( 1 + (0.560 + 0.828i)T \) | |
37 | \( 1 + (0.883 + 0.468i)T \) | |
41 | \( 1 + (0.0682 + 0.997i)T \) | |
43 | \( 1 + (-0.787 + 0.615i)T \) | |
47 | \( 1 + (-0.00975 + 0.999i)T \) | |
53 | \( 1 + (0.854 - 0.519i)T \) | |
59 | \( 1 + (0.938 - 0.344i)T \) | |
61 | \( 1 + (-0.0682 - 0.997i)T \) | |
67 | \( 1 + (-0.560 + 0.828i)T \) | |
71 | \( 1 + (0.389 + 0.921i)T \) | |
73 | \( 1 + (0.854 + 0.519i)T \) | |
79 | \( 1 + (0.995 + 0.0974i)T \) | |
83 | \( 1 + (0.987 + 0.155i)T \) | |
89 | \( 1 + (-0.560 + 0.828i)T \) | |
97 | \( 1 + (-0.900 - 0.433i)T \) | |
show more | ||
show less |
Imaginary part of the first few zeros on the critical line
−21.80537034554396500024025482203, −21.029161250408462753249975365128, −20.06693712841231996309906906360, −19.32602030022911179135407614496, −18.27326988253378922804542194503, −17.976640159591607192491910641392, −16.74994208379226672517338788389, −15.73569075620607284072902973618, −15.17409624735160780062801426777, −14.80783469662726313616038562086, −13.72335380021038700149180780279, −13.396106521762966213682062768716, −12.2026537276858747899421534736, −11.24308890586361838082013236202, −10.374980240306925332948512055175, −9.02296666605736317182824884988, −8.36330110138169057692390469764, −7.750063194916907807877060412054, −7.18367239182742210618149447875, −5.96487386058898984544711135008, −5.02144231967807148751926320446, −3.89522572158331070242499467509, −3.407496878093528843765120595184, −2.355696346692613858540162960351, −0.676296439335741261887537715007, 0.98350221821918631121466232656, 1.806590092366538481669996417088, 2.66900258213723849233705143559, 3.90975597020611571150662199213, 4.48274232887105529302212413595, 5.05378367326383916975856615462, 6.72968836473996280368766929659, 7.85326474722005473042784970054, 8.41846488279914721912845357962, 9.37505769540672438906182938049, 9.96678109987901271999232435641, 11.234690934971055548668394823263, 11.83252068361128949917704282092, 12.593031243673884478290796550415, 13.445485218714755030827658334471, 14.24445106561373985349265681039, 14.82299609581734840920307828882, 15.63211573568266506783370423579, 16.58556677845881413564599907157, 17.96700027002954227050785425703, 18.454124240259293762857104078333, 19.34801217929738372473491767628, 20.107137240494468016810373076023, 20.71670734625494173591017985937, 20.92456061878577310324387565603