L(s) = 1 | + (−0.997 + 0.0714i)2-s + (0.874 − 0.485i)3-s + (0.989 − 0.142i)4-s + (−0.895 − 0.445i)5-s + (−0.837 + 0.547i)6-s + (−0.889 + 0.457i)7-s + (−0.977 + 0.212i)8-s + (0.527 − 0.849i)9-s + (0.924 + 0.380i)10-s + (−0.107 + 0.994i)11-s + (0.795 − 0.605i)12-s + (−0.807 + 0.589i)13-s + (0.854 − 0.519i)14-s + (−0.998 + 0.0455i)15-s + (0.959 − 0.282i)16-s + (−0.799 − 0.600i)17-s + ⋯ |
L(s) = 1 | + (−0.997 + 0.0714i)2-s + (0.874 − 0.485i)3-s + (0.989 − 0.142i)4-s + (−0.895 − 0.445i)5-s + (−0.837 + 0.547i)6-s + (−0.889 + 0.457i)7-s + (−0.977 + 0.212i)8-s + (0.527 − 0.849i)9-s + (0.924 + 0.380i)10-s + (−0.107 + 0.994i)11-s + (0.795 − 0.605i)12-s + (−0.807 + 0.589i)13-s + (0.854 − 0.519i)14-s + (−0.998 + 0.0455i)15-s + (0.959 − 0.282i)16-s + (−0.799 − 0.600i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 967 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.834 - 0.550i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 967 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.834 - 0.550i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8106707115 - 0.2431007095i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8106707115 - 0.2431007095i\) |
\(L(1)\) |
\(\approx\) |
\(0.7127770035 - 0.1054251281i\) |
\(L(1)\) |
\(\approx\) |
\(0.7127770035 - 0.1054251281i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 967 | \( 1 \) |
good | 2 | \( 1 + (-0.997 + 0.0714i)T \) |
| 3 | \( 1 + (0.874 - 0.485i)T \) |
| 5 | \( 1 + (-0.895 - 0.445i)T \) |
| 7 | \( 1 + (-0.889 + 0.457i)T \) |
| 11 | \( 1 + (-0.107 + 0.994i)T \) |
| 13 | \( 1 + (-0.807 + 0.589i)T \) |
| 17 | \( 1 + (-0.799 - 0.600i)T \) |
| 19 | \( 1 + (0.978 - 0.206i)T \) |
| 23 | \( 1 + (0.494 + 0.869i)T \) |
| 29 | \( 1 + (0.710 - 0.703i)T \) |
| 31 | \( 1 + (-0.285 - 0.958i)T \) |
| 37 | \( 1 + (-0.395 - 0.918i)T \) |
| 41 | \( 1 + (0.203 + 0.979i)T \) |
| 43 | \( 1 + (-0.851 - 0.525i)T \) |
| 47 | \( 1 + (0.266 + 0.963i)T \) |
| 53 | \( 1 + (0.898 + 0.439i)T \) |
| 59 | \( 1 + (0.228 + 0.973i)T \) |
| 61 | \( 1 + (0.746 - 0.665i)T \) |
| 67 | \( 1 + (0.972 - 0.232i)T \) |
| 71 | \( 1 + (0.560 - 0.828i)T \) |
| 73 | \( 1 + (0.898 - 0.439i)T \) |
| 79 | \( 1 + (0.903 + 0.428i)T \) |
| 83 | \( 1 + (0.991 - 0.129i)T \) |
| 89 | \( 1 + (-0.687 - 0.726i)T \) |
| 97 | \( 1 + (0.623 - 0.781i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−21.849854786174159329857268476137, −20.65122423313576361089763170851, −19.93917166203074505120144025483, −19.55857749225549951227657226175, −18.92559783325792130221895326441, −18.13514163972744664901524371493, −16.90109346395106088061585110420, −16.20762813816453963360092473533, −15.68556370887798154981276917586, −14.93696818834938414577924230791, −14.06902725951861873993919439842, −12.967095806498377134155413090466, −12.100374575771623028509549745104, −10.93242808984267219394534216995, −10.44495179637138858983375190587, −9.72952709240528482428119732371, −8.608725570869949921248618106281, −8.254037416060297560557473575206, −7.151015820113882278723742734579, −6.69527048158296893645061651847, −5.15774907317995666943634378529, −3.70638590396212976322936024546, −3.2192835398685220159968713256, −2.43682031083294791135827496874, −0.77029445975417098512810132171,
0.67085808388744029514067965541, 2.03530646217421915592870688127, 2.75502079837890269453257831161, 3.78643067949403287425733128057, 5.031422875483645179591556641892, 6.47982291553895860704962666550, 7.27565437125139324849230685349, 7.64810212486535208897212914932, 8.78162235250872456036823655068, 9.41420916897417618013218239920, 9.82749968728321032742126748848, 11.37764096290339077443852882212, 12.05463894436400913117527343366, 12.66356865073571870661904683148, 13.66641250263837269553356629451, 14.933365700436339730010547619764, 15.44244500228741568097974992423, 16.01489619298474881744898050290, 17.00645715016887864344728334030, 17.96271239092040538304621957221, 18.645096465785679140705689327074, 19.547676316703977033627495194445, 19.73059203853589923980550513250, 20.469995252385758222325200622656, 21.3405419942127345091236725144