L(s) = 1 | + (−0.783 − 0.620i)2-s + (0.924 − 0.380i)3-s + (0.228 + 0.973i)4-s + (0.818 − 0.574i)5-s + (−0.961 − 0.276i)6-s + (−0.992 + 0.123i)7-s + (0.425 − 0.905i)8-s + (0.710 − 0.703i)9-s + (−0.998 − 0.0585i)10-s + (−0.844 − 0.536i)11-s + (0.581 + 0.813i)12-s + (0.886 + 0.462i)13-s + (0.854 + 0.519i)14-s + (0.538 − 0.842i)15-s + (−0.895 + 0.445i)16-s + (−0.967 − 0.250i)17-s + ⋯ |
L(s) = 1 | + (−0.783 − 0.620i)2-s + (0.924 − 0.380i)3-s + (0.228 + 0.973i)4-s + (0.818 − 0.574i)5-s + (−0.961 − 0.276i)6-s + (−0.992 + 0.123i)7-s + (0.425 − 0.905i)8-s + (0.710 − 0.703i)9-s + (−0.998 − 0.0585i)10-s + (−0.844 − 0.536i)11-s + (0.581 + 0.813i)12-s + (0.886 + 0.462i)13-s + (0.854 + 0.519i)14-s + (0.538 − 0.842i)15-s + (−0.895 + 0.445i)16-s + (−0.967 − 0.250i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 967 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.381 - 0.924i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 967 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.381 - 0.924i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7994989238 - 1.195490703i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7994989238 - 1.195490703i\) |
\(L(1)\) |
\(\approx\) |
\(0.9080262953 - 0.5554916202i\) |
\(L(1)\) |
\(\approx\) |
\(0.9080262953 - 0.5554916202i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 967 | \( 1 \) |
good | 2 | \( 1 + (-0.783 - 0.620i)T \) |
| 3 | \( 1 + (0.924 - 0.380i)T \) |
| 5 | \( 1 + (0.818 - 0.574i)T \) |
| 7 | \( 1 + (-0.992 + 0.123i)T \) |
| 11 | \( 1 + (-0.844 - 0.536i)T \) |
| 13 | \( 1 + (0.886 + 0.462i)T \) |
| 17 | \( 1 + (-0.967 - 0.250i)T \) |
| 19 | \( 1 + (0.692 + 0.721i)T \) |
| 23 | \( 1 + (0.987 - 0.155i)T \) |
| 29 | \( 1 + (0.993 - 0.116i)T \) |
| 31 | \( 1 + (0.139 - 0.990i)T \) |
| 37 | \( 1 + (0.190 + 0.981i)T \) |
| 41 | \( 1 + (0.203 - 0.979i)T \) |
| 43 | \( 1 + (0.177 + 0.984i)T \) |
| 47 | \( 1 + (-0.322 - 0.946i)T \) |
| 53 | \( 1 + (-0.829 - 0.557i)T \) |
| 59 | \( 1 + (-0.953 - 0.300i)T \) |
| 61 | \( 1 + (-0.949 + 0.313i)T \) |
| 67 | \( 1 + (0.787 - 0.615i)T \) |
| 71 | \( 1 + (-0.145 - 0.989i)T \) |
| 73 | \( 1 + (-0.829 + 0.557i)T \) |
| 79 | \( 1 + (0.989 - 0.142i)T \) |
| 83 | \( 1 + (0.483 - 0.875i)T \) |
| 89 | \( 1 + (-0.927 - 0.374i)T \) |
| 97 | \( 1 + (-0.900 + 0.433i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−21.94855463512226861767860093460, −21.05683357984889668305817359313, −20.21637324473903334458790101822, −19.60201020165465105649294833689, −18.78602584137845397189734721079, −18.04299711118860691986887891649, −17.45663523779955448728927258534, −16.22749847080503816638213222804, −15.641632697436534310785835835077, −15.17208013470095252759410137992, −14.08280195217166186991935496494, −13.48841775733771323816110690067, −12.809732624185098562915721142409, −10.7623258640938300519658491665, −10.66406021556958041369189597580, −9.56147645525374694347601593108, −9.19473060198134554446454476077, −8.22406987187344748078243269680, −7.195391479186354279371158864578, −6.64050685079321981809257770506, −5.60252732520539746652677646328, −4.61595690977058271842781476285, −3.08795553236390454991588036620, −2.55997188101083797296607943506, −1.31727048096118670032907994056,
0.755384804624970907228515146879, 1.7913787486472884025222541858, 2.72356659853432249000725341706, 3.35875386123453350727205191275, 4.55323797445135269367100156897, 6.09628248676888004032698722176, 6.775345842416341484087076491643, 7.941870981964567433222625818582, 8.66349879809768486616817858635, 9.294251416788900687453023838848, 9.905861056168051913109770996885, 10.819667957691678235835600740938, 11.98543638279928092885475542909, 12.87744514359896497760243303168, 13.38295226130284170663083407827, 13.86543485333773886190017906638, 15.456448963606083026369238931744, 16.08115305943017720007826304637, 16.805759675276602056887767848878, 17.91008683922383734275179859730, 18.52073698612514190127702319492, 19.069875702865228115821371055281, 19.95765980264503735129808891781, 20.66885082325121395224716883356, 21.12933309741841298683455176627