L(s) = 1 | + (0.787 + 0.615i)2-s + (−0.750 + 0.660i)3-s + (0.241 + 0.970i)4-s + (0.653 + 0.756i)5-s + (−0.998 + 0.0585i)6-s + (0.560 + 0.828i)7-s + (−0.407 + 0.913i)8-s + (0.126 − 0.991i)9-s + (0.0487 + 0.998i)10-s + (−0.544 + 0.838i)11-s + (−0.822 − 0.568i)12-s + (−0.544 − 0.838i)13-s + (−0.0682 + 0.997i)14-s + (−0.990 − 0.136i)15-s + (−0.883 + 0.468i)16-s + (0.951 + 0.307i)17-s + ⋯ |
L(s) = 1 | + (0.787 + 0.615i)2-s + (−0.750 + 0.660i)3-s + (0.241 + 0.970i)4-s + (0.653 + 0.756i)5-s + (−0.998 + 0.0585i)6-s + (0.560 + 0.828i)7-s + (−0.407 + 0.913i)8-s + (0.126 − 0.991i)9-s + (0.0487 + 0.998i)10-s + (−0.544 + 0.838i)11-s + (−0.822 − 0.568i)12-s + (−0.544 − 0.838i)13-s + (−0.0682 + 0.997i)14-s + (−0.990 − 0.136i)15-s + (−0.883 + 0.468i)16-s + (0.951 + 0.307i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 967 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.867 - 0.497i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 967 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.867 - 0.497i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(-0.4277219620 + 1.604796641i\) |
\(L(\frac12)\) |
\(\approx\) |
\(-0.4277219620 + 1.604796641i\) |
\(L(1)\) |
\(\approx\) |
\(0.7498959513 + 1.090312108i\) |
\(L(1)\) |
\(\approx\) |
\(0.7498959513 + 1.090312108i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 967 | \( 1 \) |
good | 2 | \( 1 + (0.787 + 0.615i)T \) |
| 3 | \( 1 + (-0.750 + 0.660i)T \) |
| 5 | \( 1 + (0.653 + 0.756i)T \) |
| 7 | \( 1 + (0.560 + 0.828i)T \) |
| 11 | \( 1 + (-0.544 + 0.838i)T \) |
| 13 | \( 1 + (-0.544 - 0.838i)T \) |
| 17 | \( 1 + (0.951 + 0.307i)T \) |
| 19 | \( 1 + (-0.477 - 0.878i)T \) |
| 23 | \( 1 + (-0.608 + 0.793i)T \) |
| 29 | \( 1 + (-0.995 - 0.0974i)T \) |
| 31 | \( 1 + (-0.0292 - 0.999i)T \) |
| 37 | \( 1 + (-0.696 + 0.717i)T \) |
| 41 | \( 1 + (-0.576 + 0.816i)T \) |
| 43 | \( 1 + (0.833 + 0.552i)T \) |
| 47 | \( 1 + (0.353 - 0.935i)T \) |
| 53 | \( 1 + (0.203 - 0.979i)T \) |
| 59 | \( 1 + (0.909 - 0.416i)T \) |
| 61 | \( 1 + (-0.576 + 0.816i)T \) |
| 67 | \( 1 + (-0.0292 + 0.999i)T \) |
| 71 | \( 1 + (0.787 - 0.615i)T \) |
| 73 | \( 1 + (0.203 + 0.979i)T \) |
| 79 | \( 1 + (0.892 + 0.451i)T \) |
| 83 | \( 1 + (0.874 - 0.485i)T \) |
| 89 | \( 1 + (-0.0292 + 0.999i)T \) |
| 97 | \( 1 + (0.623 + 0.781i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−21.17635342956133437948691327660, −20.82641810377507153809450813354, −19.82011080906567522707691579870, −18.91072848349122425433532005742, −18.35861615380128040382042282485, −17.25174012158258817331570498801, −16.612821168688112642594033617162, −16.00509720866410857893962201015, −14.282648708182151810593109268736, −14.081004004478105348161695815952, −13.26017889696836840265151192338, −12.334024602266670956087914822315, −12.00901977300296895528016248131, −10.70062052704381217426629474871, −10.50887361061038680577196672634, −9.295415022507020802746015660076, −8.08338510695981457606675799539, −7.11918632166740867621812193255, −6.09927453111285934056667024299, −5.414426912278214507728096843960, −4.74060215111829261474186665353, −3.76419405739202381089821545286, −2.24738831436210401074856038528, −1.56361860115266916429899600141, −0.57055320337102537479156259600,
2.022910500945599301214399246214, 2.90306947951915926377553009216, 3.957330628198049506304592216517, 5.19990761634553337085613233550, 5.39299406898988256503212047854, 6.29724425310519227404824159225, 7.26039348298652468740796886890, 8.10621127633802835249687999100, 9.41094374490094589627825130749, 10.13358231012552218922286216570, 11.10553205464124314480495040328, 11.83662717149997299387805613841, 12.64419454674329582500466340224, 13.44983048451838572445592033043, 14.77378665285344037994065145497, 14.97521936210842459286404181659, 15.56169838186824618089391527227, 16.687969655502064795536745372024, 17.586061096080604247558708838850, 17.76588677614586735429512919804, 18.75802096950479326934483853519, 20.29045894543575196470951602731, 21.08054187122129143891473368063, 21.59023633081947114327671241928, 22.298182910696574082328670814061