L(s) = 1 | + (−0.120 + 0.992i)2-s + (−0.145 − 0.989i)3-s + (−0.971 − 0.238i)4-s + (0.471 + 0.881i)5-s + (0.999 − 0.0260i)6-s + (−0.996 − 0.0844i)7-s + (0.353 − 0.935i)8-s + (−0.957 + 0.288i)9-s + (−0.932 + 0.362i)10-s + (−0.822 − 0.568i)11-s + (−0.0941 + 0.995i)12-s + (−0.0812 − 0.996i)13-s + (0.203 − 0.979i)14-s + (0.803 − 0.595i)15-s + (0.886 + 0.462i)16-s + (−0.883 − 0.468i)17-s + ⋯ |
L(s) = 1 | + (−0.120 + 0.992i)2-s + (−0.145 − 0.989i)3-s + (−0.971 − 0.238i)4-s + (0.471 + 0.881i)5-s + (0.999 − 0.0260i)6-s + (−0.996 − 0.0844i)7-s + (0.353 − 0.935i)8-s + (−0.957 + 0.288i)9-s + (−0.932 + 0.362i)10-s + (−0.822 − 0.568i)11-s + (−0.0941 + 0.995i)12-s + (−0.0812 − 0.996i)13-s + (0.203 − 0.979i)14-s + (0.803 − 0.595i)15-s + (0.886 + 0.462i)16-s + (−0.883 − 0.468i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 967 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.459 + 0.888i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 967 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.459 + 0.888i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.2973957041 + 0.4885499039i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.2973957041 + 0.4885499039i\) |
\(L(1)\) |
\(\approx\) |
\(0.6552720972 + 0.2021785597i\) |
\(L(1)\) |
\(\approx\) |
\(0.6552720972 + 0.2021785597i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 967 | \( 1 \) |
good | 2 | \( 1 + (-0.120 + 0.992i)T \) |
| 3 | \( 1 + (-0.145 - 0.989i)T \) |
| 5 | \( 1 + (0.471 + 0.881i)T \) |
| 7 | \( 1 + (-0.996 - 0.0844i)T \) |
| 11 | \( 1 + (-0.822 - 0.568i)T \) |
| 13 | \( 1 + (-0.0812 - 0.996i)T \) |
| 17 | \( 1 + (-0.883 - 0.468i)T \) |
| 19 | \( 1 + (0.975 - 0.219i)T \) |
| 23 | \( 1 + (-0.998 + 0.0585i)T \) |
| 29 | \( 1 + (0.737 + 0.675i)T \) |
| 31 | \( 1 + (0.999 - 0.0130i)T \) |
| 37 | \( 1 + (0.505 + 0.862i)T \) |
| 41 | \( 1 + (0.962 + 0.269i)T \) |
| 43 | \( 1 + (-0.705 + 0.708i)T \) |
| 47 | \( 1 + (-0.982 + 0.187i)T \) |
| 53 | \( 1 + (0.995 + 0.0909i)T \) |
| 59 | \( 1 + (-0.857 + 0.514i)T \) |
| 61 | \( 1 + (-0.715 + 0.699i)T \) |
| 67 | \( 1 + (-0.511 + 0.859i)T \) |
| 71 | \( 1 + (-0.799 + 0.600i)T \) |
| 73 | \( 1 + (0.995 - 0.0909i)T \) |
| 79 | \( 1 + (-0.310 - 0.950i)T \) |
| 83 | \( 1 + (0.602 - 0.797i)T \) |
| 89 | \( 1 + (-0.488 - 0.872i)T \) |
| 97 | \( 1 + (-0.222 + 0.974i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−21.36825424088216224794652707801, −20.838618688913180799452355298039, −19.92187600744669443286678277466, −19.59902197539062736235169896197, −18.28653255847847990505196818602, −17.62321989916571796672180328887, −16.74097751305603792893094980259, −16.11059630464511822451636310679, −15.33929946199628404085072615363, −13.9685130792784338114452335156, −13.51948669762470179096166707096, −12.43995010233846663011126617740, −11.97047796012141492540965051820, −10.87728607701396355074323270863, −9.91465821653080470649026883769, −9.66552371176459366105345864651, −8.87143024818494623716649211211, −7.998128318567983380335335350938, −6.35384433544325539245241366650, −5.431508362477921560657718990685, −4.54082264875152770990360842205, −3.96740063671467289298070215810, −2.77364253105059324743599703298, −1.93761767432385138313447940503, −0.31744730595224250520874688769,
0.96584066052011611895395242632, 2.68276144695608775578740713540, 3.2004752621343451459727416494, 4.90114591256983969641979052633, 5.95570145550593859057732022777, 6.27094766166652964376479372832, 7.21698105240637662124237273876, 7.810498242158154197996577787, 8.77242533409748876075631580288, 9.88246350268588068220458564633, 10.47986087274623077075682005035, 11.64564192051815353967271173377, 12.82875840409134132451965936778, 13.48989593397793572263263076552, 13.81425689272723376847252478513, 14.894597091746604667854981391327, 15.795902364144794513889591278856, 16.39360787941664116224215001338, 17.54915681435259959100192466842, 18.07735155173605213725836410022, 18.47521159621778483825951405651, 19.444451780403777440588008190996, 20.0466970216031959386177830760, 21.62212701189791906705897045716, 22.418472469554959823701170496397