L(s) = 1 | + (0.389 + 0.921i)2-s + (0.999 + 0.0195i)3-s + (−0.696 + 0.717i)4-s + (−0.763 + 0.646i)5-s + (0.371 + 0.928i)6-s + (0.998 + 0.0585i)7-s + (−0.932 − 0.362i)8-s + (0.999 + 0.0390i)9-s + (−0.892 − 0.451i)10-s + (−0.184 − 0.982i)11-s + (−0.710 + 0.703i)12-s + (0.184 − 0.982i)13-s + (0.334 + 0.942i)14-s + (−0.775 + 0.631i)15-s + (−0.0292 − 0.999i)16-s + (−0.442 + 0.896i)17-s + ⋯ |
L(s) = 1 | + (0.389 + 0.921i)2-s + (0.999 + 0.0195i)3-s + (−0.696 + 0.717i)4-s + (−0.763 + 0.646i)5-s + (0.371 + 0.928i)6-s + (0.998 + 0.0585i)7-s + (−0.932 − 0.362i)8-s + (0.999 + 0.0390i)9-s + (−0.892 − 0.451i)10-s + (−0.184 − 0.982i)11-s + (−0.710 + 0.703i)12-s + (0.184 − 0.982i)13-s + (0.334 + 0.942i)14-s + (−0.775 + 0.631i)15-s + (−0.0292 − 0.999i)16-s + (−0.442 + 0.896i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 967 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.606 + 0.795i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 967 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.606 + 0.795i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(3.146654815 + 1.557799634i\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.146654815 + 1.557799634i\) |
\(L(1)\) |
\(\approx\) |
\(1.508848714 + 0.7876721283i\) |
\(L(1)\) |
\(\approx\) |
\(1.508848714 + 0.7876721283i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 967 | \( 1 \) |
good | 2 | \( 1 + (0.389 + 0.921i)T \) |
| 3 | \( 1 + (0.999 + 0.0195i)T \) |
| 5 | \( 1 + (-0.763 + 0.646i)T \) |
| 7 | \( 1 + (0.998 + 0.0585i)T \) |
| 11 | \( 1 + (-0.184 - 0.982i)T \) |
| 13 | \( 1 + (0.184 - 0.982i)T \) |
| 17 | \( 1 + (-0.442 + 0.896i)T \) |
| 19 | \( 1 + (0.638 - 0.769i)T \) |
| 23 | \( 1 + (-0.316 + 0.948i)T \) |
| 29 | \( 1 + (-0.592 + 0.805i)T \) |
| 31 | \( 1 + (0.560 - 0.828i)T \) |
| 37 | \( 1 + (0.883 - 0.468i)T \) |
| 41 | \( 1 + (0.0682 - 0.997i)T \) |
| 43 | \( 1 + (-0.787 - 0.615i)T \) |
| 47 | \( 1 + (-0.00975 - 0.999i)T \) |
| 53 | \( 1 + (0.854 + 0.519i)T \) |
| 59 | \( 1 + (0.938 + 0.344i)T \) |
| 61 | \( 1 + (-0.0682 + 0.997i)T \) |
| 67 | \( 1 + (-0.560 - 0.828i)T \) |
| 71 | \( 1 + (0.389 - 0.921i)T \) |
| 73 | \( 1 + (0.854 - 0.519i)T \) |
| 79 | \( 1 + (0.995 - 0.0974i)T \) |
| 83 | \( 1 + (0.987 - 0.155i)T \) |
| 89 | \( 1 + (-0.560 - 0.828i)T \) |
| 97 | \( 1 + (-0.900 + 0.433i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−20.92456061878577310324387565603, −20.71670734625494173591017985937, −20.107137240494468016810373076023, −19.34801217929738372473491767628, −18.454124240259293762857104078333, −17.96700027002954227050785425703, −16.58556677845881413564599907157, −15.63211573568266506783370423579, −14.82299609581734840920307828882, −14.24445106561373985349265681039, −13.445485218714755030827658334471, −12.593031243673884478290796550415, −11.83252068361128949917704282092, −11.234690934971055548668394823263, −9.96678109987901271999232435641, −9.37505769540672438906182938049, −8.41846488279914721912845357962, −7.85326474722005473042784970054, −6.72968836473996280368766929659, −5.05378367326383916975856615462, −4.48274232887105529302212413595, −3.90975597020611571150662199213, −2.66900258213723849233705143559, −1.806590092366538481669996417088, −0.98350221821918631121466232656,
0.676296439335741261887537715007, 2.355696346692613858540162960351, 3.407496878093528843765120595184, 3.89522572158331070242499467509, 5.02144231967807148751926320446, 5.96487386058898984544711135008, 7.18367239182742210618149447875, 7.750063194916907807877060412054, 8.36330110138169057692390469764, 9.02296666605736317182824884988, 10.374980240306925332948512055175, 11.24308890586361838082013236202, 12.2026537276858747899421534736, 13.396106521762966213682062768716, 13.72335380021038700149180780279, 14.80783469662726313616038562086, 15.17409624735160780062801426777, 15.73569075620607284072902973618, 16.74994208379226672517338788389, 17.976640159591607192491910641392, 18.27326988253378922804542194503, 19.32602030022911179135407614496, 20.06693712841231996309906906360, 21.029161250408462753249975365128, 21.80537034554396500024025482203