Properties

Label 1-953-953.952-r0-0-0
Degree $1$
Conductor $953$
Sign $1$
Analytic cond. $4.42571$
Root an. cond. $4.42571$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s + 4-s − 5-s − 6-s + 7-s + 8-s + 9-s − 10-s − 11-s − 12-s + 13-s + 14-s + 15-s + 16-s + 17-s + 18-s − 19-s − 20-s − 21-s − 22-s − 23-s − 24-s + 25-s + 26-s − 27-s + 28-s + ⋯
L(s)  = 1  + 2-s − 3-s + 4-s − 5-s − 6-s + 7-s + 8-s + 9-s − 10-s − 11-s − 12-s + 13-s + 14-s + 15-s + 16-s + 17-s + 18-s − 19-s − 20-s − 21-s − 22-s − 23-s − 24-s + 25-s + 26-s − 27-s + 28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 953 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 953 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(1\)
Conductor: \(953\)
Sign: $1$
Analytic conductor: \(4.42571\)
Root analytic conductor: \(4.42571\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: $\chi_{953} (952, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((1,\ 953,\ (0:\ ),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(2.025441626\)
\(L(\frac12)\) \(\approx\) \(2.025441626\)
\(L(1)\) \(\approx\) \(1.452955364\)
\(L(1)\) \(\approx\) \(1.452955364\)

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad953 \( 1 \)
good2 \( 1 + T \)
3 \( 1 - T \)
5 \( 1 - T \)
7 \( 1 + T \)
11 \( 1 - T \)
13 \( 1 + T \)
17 \( 1 + T \)
19 \( 1 - T \)
23 \( 1 - T \)
29 \( 1 + T \)
31 \( 1 - T \)
37 \( 1 + T \)
41 \( 1 + T \)
43 \( 1 - T \)
47 \( 1 - T \)
53 \( 1 + T \)
59 \( 1 + T \)
61 \( 1 - T \)
67 \( 1 + T \)
71 \( 1 + T \)
73 \( 1 + T \)
79 \( 1 + T \)
83 \( 1 + T \)
89 \( 1 - T \)
97 \( 1 - T \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−21.68650191565337641439325114435, −21.23757319362063879717884679101, −20.52713736249540989747405257643, −19.55059040705055241740701078834, −18.50634191399529775939593810204, −17.96335943327357429055989572940, −16.6447428459452116782144695545, −16.24133996389143444115563974421, −15.39603122972147355401886016308, −14.79059457018790118343292861566, −13.749706098835473863821322881864, −12.75244833045400841030001551960, −12.21411433457183145538980396407, −11.313485047017126616918146478189, −10.938377906493783707948778711358, −10.14334617716672544878371537603, −8.21761923384515093683139429008, −7.81429200752830211284985220380, −6.772334642454617139396772431730, −5.833478218296566642294652906149, −5.07782255180366584237655928650, −4.312191079218885398015904239874, −3.57237339675458713124286576058, −2.16488559636396210822834353649, −0.98152620631391755757008726291, 0.98152620631391755757008726291, 2.16488559636396210822834353649, 3.57237339675458713124286576058, 4.312191079218885398015904239874, 5.07782255180366584237655928650, 5.833478218296566642294652906149, 6.772334642454617139396772431730, 7.81429200752830211284985220380, 8.21761923384515093683139429008, 10.14334617716672544878371537603, 10.938377906493783707948778711358, 11.313485047017126616918146478189, 12.21411433457183145538980396407, 12.75244833045400841030001551960, 13.749706098835473863821322881864, 14.79059457018790118343292861566, 15.39603122972147355401886016308, 16.24133996389143444115563974421, 16.6447428459452116782144695545, 17.96335943327357429055989572940, 18.50634191399529775939593810204, 19.55059040705055241740701078834, 20.52713736249540989747405257643, 21.23757319362063879717884679101, 21.68650191565337641439325114435

Graph of the $Z$-function along the critical line