L(s) = 1 | + 2-s + 3-s + 4-s + 6-s − 7-s + 8-s + 9-s + 11-s + 12-s + 13-s − 14-s + 16-s − 17-s + 18-s − 21-s + 22-s − 23-s + 24-s + 26-s + 27-s − 28-s − 29-s − 31-s + 32-s + 33-s − 34-s + 36-s + ⋯ |
L(s) = 1 | + 2-s + 3-s + 4-s + 6-s − 7-s + 8-s + 9-s + 11-s + 12-s + 13-s − 14-s + 16-s − 17-s + 18-s − 21-s + 22-s − 23-s + 24-s + 26-s + 27-s − 28-s − 29-s − 31-s + 32-s + 33-s − 34-s + 36-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 95 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 95 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(4.253930769\) |
\(L(\frac12)\) |
\(\approx\) |
\(4.253930769\) |
\(L(1)\) |
\(\approx\) |
\(2.578564842\) |
\(L(1)\) |
\(\approx\) |
\(2.578564842\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 19 | \( 1 \) |
good | 2 | \( 1 + T \) |
| 3 | \( 1 + T \) |
| 7 | \( 1 - T \) |
| 11 | \( 1 + T \) |
| 13 | \( 1 + T \) |
| 17 | \( 1 - T \) |
| 23 | \( 1 - T \) |
| 29 | \( 1 - T \) |
| 31 | \( 1 - T \) |
| 37 | \( 1 + T \) |
| 41 | \( 1 - T \) |
| 43 | \( 1 - T \) |
| 47 | \( 1 - T \) |
| 53 | \( 1 + T \) |
| 59 | \( 1 - T \) |
| 61 | \( 1 + T \) |
| 67 | \( 1 + T \) |
| 71 | \( 1 - T \) |
| 73 | \( 1 - T \) |
| 79 | \( 1 - T \) |
| 83 | \( 1 - T \) |
| 89 | \( 1 - T \) |
| 97 | \( 1 + T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−30.23265183696012695184083300872, −29.27938403823280748967589108167, −28.00054946578319882160940361777, −26.39784457802140517588358518996, −25.58214084168719201698024169407, −24.77561474289418773080537418449, −23.68109520822372539038382383830, −22.4085010324865502905692068217, −21.66226644999998078812797091575, −20.23818906997674775202237395394, −19.82328799751565574456269375641, −18.535448014834162256039685359257, −16.565774884582515894149541814869, −15.657278846743730856281961000028, −14.6451016714692529814686719904, −13.536157210440015496201160629741, −12.87438993327497290816145860958, −11.447319410849700177967245509866, −9.94526501369435831524904146612, −8.67695243363343554902904315633, −7.09458909151310291308741027052, −6.11608180143257073848335422001, −4.14550362368825989000989851231, −3.34640088272081680339402511009, −1.83333896167925940476672330751,
1.83333896167925940476672330751, 3.34640088272081680339402511009, 4.14550362368825989000989851231, 6.11608180143257073848335422001, 7.09458909151310291308741027052, 8.67695243363343554902904315633, 9.94526501369435831524904146612, 11.447319410849700177967245509866, 12.87438993327497290816145860958, 13.536157210440015496201160629741, 14.6451016714692529814686719904, 15.657278846743730856281961000028, 16.565774884582515894149541814869, 18.535448014834162256039685359257, 19.82328799751565574456269375641, 20.23818906997674775202237395394, 21.66226644999998078812797091575, 22.4085010324865502905692068217, 23.68109520822372539038382383830, 24.77561474289418773080537418449, 25.58214084168719201698024169407, 26.39784457802140517588358518996, 28.00054946578319882160940361777, 29.27938403823280748967589108167, 30.23265183696012695184083300872