L(s) = 1 | + (−0.309 + 0.951i)2-s + (−0.809 − 0.587i)4-s + (0.5 − 0.866i)5-s + (−0.104 + 0.994i)7-s + (0.809 − 0.587i)8-s + (0.669 + 0.743i)10-s + (−0.913 + 0.406i)11-s + (−0.978 − 0.207i)13-s + (−0.913 − 0.406i)14-s + (0.309 + 0.951i)16-s + (−0.913 − 0.406i)17-s + (−0.978 + 0.207i)19-s + (−0.913 + 0.406i)20-s + (−0.104 − 0.994i)22-s + (0.809 − 0.587i)23-s + ⋯ |
L(s) = 1 | + (−0.309 + 0.951i)2-s + (−0.809 − 0.587i)4-s + (0.5 − 0.866i)5-s + (−0.104 + 0.994i)7-s + (0.809 − 0.587i)8-s + (0.669 + 0.743i)10-s + (−0.913 + 0.406i)11-s + (−0.978 − 0.207i)13-s + (−0.913 − 0.406i)14-s + (0.309 + 0.951i)16-s + (−0.913 − 0.406i)17-s + (−0.978 + 0.207i)19-s + (−0.913 + 0.406i)20-s + (−0.104 − 0.994i)22-s + (0.809 − 0.587i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 93 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.630 - 0.776i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 93 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.630 - 0.776i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.005558291565 + 0.01166683459i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.005558291565 + 0.01166683459i\) |
\(L(1)\) |
\(\approx\) |
\(0.5938845611 + 0.2121069259i\) |
\(L(1)\) |
\(\approx\) |
\(0.5938845611 + 0.2121069259i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 31 | \( 1 \) |
good | 2 | \( 1 + (-0.309 + 0.951i)T \) |
| 5 | \( 1 + (0.5 - 0.866i)T \) |
| 7 | \( 1 + (-0.104 + 0.994i)T \) |
| 11 | \( 1 + (-0.913 + 0.406i)T \) |
| 13 | \( 1 + (-0.978 - 0.207i)T \) |
| 17 | \( 1 + (-0.913 - 0.406i)T \) |
| 19 | \( 1 + (-0.978 + 0.207i)T \) |
| 23 | \( 1 + (0.809 - 0.587i)T \) |
| 29 | \( 1 + (-0.309 + 0.951i)T \) |
| 37 | \( 1 + (-0.5 - 0.866i)T \) |
| 41 | \( 1 + (-0.669 - 0.743i)T \) |
| 43 | \( 1 + (-0.978 + 0.207i)T \) |
| 47 | \( 1 + (-0.309 - 0.951i)T \) |
| 53 | \( 1 + (0.104 + 0.994i)T \) |
| 59 | \( 1 + (-0.669 + 0.743i)T \) |
| 61 | \( 1 + T \) |
| 67 | \( 1 + (-0.5 + 0.866i)T \) |
| 71 | \( 1 + (0.104 + 0.994i)T \) |
| 73 | \( 1 + (0.913 - 0.406i)T \) |
| 79 | \( 1 + (0.913 + 0.406i)T \) |
| 83 | \( 1 + (-0.669 - 0.743i)T \) |
| 89 | \( 1 + (0.809 + 0.587i)T \) |
| 97 | \( 1 + (-0.809 - 0.587i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−30.12323548115151142819560768641, −29.424263588935369619975964941721, −28.67711397493099388631192594261, −27.06971228453859791772418540270, −26.543457995506152105912192794036, −25.650239385759572070551234997501, −23.85968528419801483722984387055, −22.787368141711032997399870064581, −21.77935204144270979609562725038, −20.93920669545366994772780750640, −19.644682751404061528789749274902, −18.86523204653341764717385632795, −17.6190505092553781877691477249, −16.92193268013687968626973895664, −15.04522057112433590445763388032, −13.69450131742151982451858061129, −13.02927941448142059781309303423, −11.30699748872698913277930483803, −10.52225988912205563685219032415, −9.62643860996042730630912969050, −8.01850012342780732351921427280, −6.74397441786251770123817683439, −4.79783862561646045659753768281, −3.300662352438566625524433734614, −2.05063365429316124340147553480,
0.00605021043322642951353618967, 2.1724095692534424987816255601, 4.76261191272912682337022737277, 5.49444624977054215329595149448, 6.92599735263876091626181513959, 8.41618822904344536720458020344, 9.19559406609643197325558267103, 10.38877811405822657937261665975, 12.4454204408456472321344751335, 13.229955317939551006514954234355, 14.74342184162301442208712182806, 15.626357829270661049721817051474, 16.72373244172530224135034435327, 17.71363292664262093762728745616, 18.6498183083804657683618095564, 19.95663513016891643102958119272, 21.33789592960998614714350747103, 22.386898561995935249944944877271, 23.669004173995898042268936919112, 24.6932772580986318585105026053, 25.243305729772951910826658329047, 26.37415384081763357144104453989, 27.59935949630121829764511786685, 28.46827549244191093544984471667, 29.25993810952835631996619308649