L(s) = 1 | + (0.809 + 0.587i)2-s + (0.309 + 0.951i)4-s − 5-s + (0.309 + 0.951i)7-s + (−0.309 + 0.951i)8-s + (−0.809 − 0.587i)10-s + (−0.309 − 0.951i)11-s + (−0.809 + 0.587i)13-s + (−0.309 + 0.951i)14-s + (−0.809 + 0.587i)16-s + (−0.309 + 0.951i)17-s + (−0.809 − 0.587i)19-s + (−0.309 − 0.951i)20-s + (0.309 − 0.951i)22-s + (−0.309 + 0.951i)23-s + ⋯ |
L(s) = 1 | + (0.809 + 0.587i)2-s + (0.309 + 0.951i)4-s − 5-s + (0.309 + 0.951i)7-s + (−0.309 + 0.951i)8-s + (−0.809 − 0.587i)10-s + (−0.309 − 0.951i)11-s + (−0.809 + 0.587i)13-s + (−0.309 + 0.951i)14-s + (−0.809 + 0.587i)16-s + (−0.309 + 0.951i)17-s + (−0.809 − 0.587i)19-s + (−0.309 − 0.951i)20-s + (0.309 − 0.951i)22-s + (−0.309 + 0.951i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 93 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.962 + 0.272i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 93 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.962 + 0.272i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.2117278763 + 1.522140266i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.2117278763 + 1.522140266i\) |
\(L(1)\) |
\(\approx\) |
\(0.9744156035 + 0.7657456851i\) |
\(L(1)\) |
\(\approx\) |
\(0.9744156035 + 0.7657456851i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 31 | \( 1 \) |
good | 2 | \( 1 + (0.809 + 0.587i)T \) |
| 5 | \( 1 - T \) |
| 7 | \( 1 + (0.309 + 0.951i)T \) |
| 11 | \( 1 + (-0.309 - 0.951i)T \) |
| 13 | \( 1 + (-0.809 + 0.587i)T \) |
| 17 | \( 1 + (-0.309 + 0.951i)T \) |
| 19 | \( 1 + (-0.809 - 0.587i)T \) |
| 23 | \( 1 + (-0.309 + 0.951i)T \) |
| 29 | \( 1 + (0.809 + 0.587i)T \) |
| 37 | \( 1 + T \) |
| 41 | \( 1 + (0.809 + 0.587i)T \) |
| 43 | \( 1 + (-0.809 - 0.587i)T \) |
| 47 | \( 1 + (0.809 - 0.587i)T \) |
| 53 | \( 1 + (-0.309 + 0.951i)T \) |
| 59 | \( 1 + (0.809 - 0.587i)T \) |
| 61 | \( 1 + T \) |
| 67 | \( 1 + T \) |
| 71 | \( 1 + (-0.309 + 0.951i)T \) |
| 73 | \( 1 + (0.309 + 0.951i)T \) |
| 79 | \( 1 + (0.309 - 0.951i)T \) |
| 83 | \( 1 + (0.809 + 0.587i)T \) |
| 89 | \( 1 + (-0.309 - 0.951i)T \) |
| 97 | \( 1 + (0.309 + 0.951i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−29.84805232990670249959660221835, −28.677892049186044734148995546200, −27.53604404523842797792547661722, −26.78802992084667469747402271674, −25.07408871839895363252989687237, −23.959744481515626145127559412593, −23.09567083783639499363281420929, −22.46646605992306710734389740716, −20.82242402903664383951404564641, −20.17745646773656065048668224433, −19.300718216318262907113189065835, −17.9134292435166218728413492416, −16.35436256098893573360439489023, −15.15960768882328661478623136630, −14.33386507726911774424591477749, −12.92217963902169558821366630764, −12.03878729020545402276677115327, −10.859344470363630044941548152655, −9.90763634185072394150234590596, −7.88618453908766399812142401901, −6.79547243277419683160423871449, −4.852771002406388990369246248785, −4.10419479255439940516388238445, −2.513841128693606930019636769835, −0.51761886023558058688815486414,
2.57278179217215558889835221240, 4.008573198177315621668012701242, 5.23508275934411807465472997963, 6.56426947808325974665951756622, 7.948251359740133851845165345117, 8.79283601229418723345312326785, 11.098155965375070170133966955726, 11.957597848857206207244771979735, 12.99317323635622426844214257249, 14.45767020176574430748185036307, 15.30932445084680541135186023861, 16.163587759226997977639497409513, 17.38024204269128137603352130849, 18.855271586897183992976906173093, 19.90360337556932633196227365945, 21.59044676748706542960457256543, 21.84830447849924177521914282236, 23.5222097696444383066182639855, 23.96860669401641412292703627402, 25.03446677708701456731013427259, 26.28907889262979571451114405231, 27.17389355185098223740412522161, 28.43682869296893973346113854373, 29.7775907088786412202362170305, 30.87301096205470370638254630380