L(s) = 1 | + (−0.309 + 0.951i)2-s + (−0.809 − 0.587i)4-s + (0.5 + 0.866i)5-s + (0.913 − 0.406i)7-s + (0.809 − 0.587i)8-s + (−0.978 + 0.207i)10-s + (0.104 − 0.994i)11-s + (0.669 − 0.743i)13-s + (0.104 + 0.994i)14-s + (0.309 + 0.951i)16-s + (0.104 + 0.994i)17-s + (0.669 + 0.743i)19-s + (0.104 − 0.994i)20-s + (0.913 + 0.406i)22-s + (0.809 − 0.587i)23-s + ⋯ |
L(s) = 1 | + (−0.309 + 0.951i)2-s + (−0.809 − 0.587i)4-s + (0.5 + 0.866i)5-s + (0.913 − 0.406i)7-s + (0.809 − 0.587i)8-s + (−0.978 + 0.207i)10-s + (0.104 − 0.994i)11-s + (0.669 − 0.743i)13-s + (0.104 + 0.994i)14-s + (0.309 + 0.951i)16-s + (0.104 + 0.994i)17-s + (0.669 + 0.743i)19-s + (0.104 − 0.994i)20-s + (0.913 + 0.406i)22-s + (0.809 − 0.587i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 93 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.308 + 0.951i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 93 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.308 + 0.951i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.355421051 + 0.9855105445i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.355421051 + 0.9855105445i\) |
\(L(1)\) |
\(\approx\) |
\(1.004798479 + 0.5024054036i\) |
\(L(1)\) |
\(\approx\) |
\(1.004798479 + 0.5024054036i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 31 | \( 1 \) |
good | 2 | \( 1 + (-0.309 + 0.951i)T \) |
| 5 | \( 1 + (0.5 + 0.866i)T \) |
| 7 | \( 1 + (0.913 - 0.406i)T \) |
| 11 | \( 1 + (0.104 - 0.994i)T \) |
| 13 | \( 1 + (0.669 - 0.743i)T \) |
| 17 | \( 1 + (0.104 + 0.994i)T \) |
| 19 | \( 1 + (0.669 + 0.743i)T \) |
| 23 | \( 1 + (0.809 - 0.587i)T \) |
| 29 | \( 1 + (-0.309 + 0.951i)T \) |
| 37 | \( 1 + (-0.5 + 0.866i)T \) |
| 41 | \( 1 + (0.978 - 0.207i)T \) |
| 43 | \( 1 + (0.669 + 0.743i)T \) |
| 47 | \( 1 + (-0.309 - 0.951i)T \) |
| 53 | \( 1 + (-0.913 - 0.406i)T \) |
| 59 | \( 1 + (0.978 + 0.207i)T \) |
| 61 | \( 1 + T \) |
| 67 | \( 1 + (-0.5 - 0.866i)T \) |
| 71 | \( 1 + (-0.913 - 0.406i)T \) |
| 73 | \( 1 + (-0.104 + 0.994i)T \) |
| 79 | \( 1 + (-0.104 - 0.994i)T \) |
| 83 | \( 1 + (0.978 - 0.207i)T \) |
| 89 | \( 1 + (0.809 + 0.587i)T \) |
| 97 | \( 1 + (-0.809 - 0.587i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−29.74951774798204875030212336989, −28.52498165456354679567420205984, −28.12546385284803961805033890710, −27.022106413675827369979539757753, −25.72219828991588912555043297519, −24.69756203686506415732786101647, −23.41014877619823327507216565218, −22.13798256546795180331913305354, −20.88156804797443327874163566328, −20.67591875290164726552228309725, −19.23436413697557870982424486514, −17.93521327780911993553139591895, −17.38862770362879957130889312663, −15.9567580810550543578612162473, −14.238931152781543200707290565661, −13.22618030672355359572375503351, −12.04141344919678500499340622462, −11.19100269317147973352990666374, −9.549574856620137996414649349069, −8.93972913917301175272344173359, −7.519873247443365282918711524094, −5.29060490768283521764685539615, −4.33110955614134678933807844468, −2.3192269202154278593883668817, −1.14925444556479764746698725051,
1.25789081481102820777942792202, 3.56255099453710882211583454144, 5.35304236970681056014002432659, 6.356325876535264512698561509317, 7.68365236451526006015633337915, 8.680885843414025616554586249159, 10.28775026116339889370287373953, 11.03750233070061724999840549382, 13.19320783208249486914779025624, 14.235084857935837655042231987047, 14.91173106877975521888984548253, 16.3119943030689120655881383840, 17.41759685095387721079680127083, 18.24208002160720466452179888728, 19.16728330832350536588668967675, 20.81079351670426717484146769497, 22.037297162111749296651874816918, 23.043704507027235106425220457, 24.1118369700445835558962287451, 25.04856838766954878778620088583, 26.12615260427789803882221425185, 26.93036414772877259832251569686, 27.78588143199944130531659696356, 29.218780727864015461628574791647, 30.33243242069269190406698772050