L(s) = 1 | + (−0.309 − 0.951i)2-s + (−0.809 + 0.587i)4-s + (0.5 − 0.866i)5-s + (0.913 + 0.406i)7-s + (0.809 + 0.587i)8-s + (−0.978 − 0.207i)10-s + (0.104 + 0.994i)11-s + (0.669 + 0.743i)13-s + (0.104 − 0.994i)14-s + (0.309 − 0.951i)16-s + (0.104 − 0.994i)17-s + (0.669 − 0.743i)19-s + (0.104 + 0.994i)20-s + (0.913 − 0.406i)22-s + (0.809 + 0.587i)23-s + ⋯ |
L(s) = 1 | + (−0.309 − 0.951i)2-s + (−0.809 + 0.587i)4-s + (0.5 − 0.866i)5-s + (0.913 + 0.406i)7-s + (0.809 + 0.587i)8-s + (−0.978 − 0.207i)10-s + (0.104 + 0.994i)11-s + (0.669 + 0.743i)13-s + (0.104 − 0.994i)14-s + (0.309 − 0.951i)16-s + (0.104 − 0.994i)17-s + (0.669 − 0.743i)19-s + (0.104 + 0.994i)20-s + (0.913 − 0.406i)22-s + (0.809 + 0.587i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 93 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.308 - 0.951i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 93 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.308 - 0.951i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.355421051 - 0.9855105445i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.355421051 - 0.9855105445i\) |
\(L(1)\) |
\(\approx\) |
\(1.004798479 - 0.5024054036i\) |
\(L(1)\) |
\(\approx\) |
\(1.004798479 - 0.5024054036i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 31 | \( 1 \) |
good | 2 | \( 1 + (-0.309 - 0.951i)T \) |
| 5 | \( 1 + (0.5 - 0.866i)T \) |
| 7 | \( 1 + (0.913 + 0.406i)T \) |
| 11 | \( 1 + (0.104 + 0.994i)T \) |
| 13 | \( 1 + (0.669 + 0.743i)T \) |
| 17 | \( 1 + (0.104 - 0.994i)T \) |
| 19 | \( 1 + (0.669 - 0.743i)T \) |
| 23 | \( 1 + (0.809 + 0.587i)T \) |
| 29 | \( 1 + (-0.309 - 0.951i)T \) |
| 37 | \( 1 + (-0.5 - 0.866i)T \) |
| 41 | \( 1 + (0.978 + 0.207i)T \) |
| 43 | \( 1 + (0.669 - 0.743i)T \) |
| 47 | \( 1 + (-0.309 + 0.951i)T \) |
| 53 | \( 1 + (-0.913 + 0.406i)T \) |
| 59 | \( 1 + (0.978 - 0.207i)T \) |
| 61 | \( 1 + T \) |
| 67 | \( 1 + (-0.5 + 0.866i)T \) |
| 71 | \( 1 + (-0.913 + 0.406i)T \) |
| 73 | \( 1 + (-0.104 - 0.994i)T \) |
| 79 | \( 1 + (-0.104 + 0.994i)T \) |
| 83 | \( 1 + (0.978 + 0.207i)T \) |
| 89 | \( 1 + (0.809 - 0.587i)T \) |
| 97 | \( 1 + (-0.809 + 0.587i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−30.33243242069269190406698772050, −29.218780727864015461628574791647, −27.78588143199944130531659696356, −26.93036414772877259832251569686, −26.12615260427789803882221425185, −25.04856838766954878778620088583, −24.1118369700445835558962287451, −23.043704507027235106425220457, −22.037297162111749296651874816918, −20.81079351670426717484146769497, −19.16728330832350536588668967675, −18.24208002160720466452179888728, −17.41759685095387721079680127083, −16.3119943030689120655881383840, −14.91173106877975521888984548253, −14.235084857935837655042231987047, −13.19320783208249486914779025624, −11.03750233070061724999840549382, −10.28775026116339889370287373953, −8.680885843414025616554586249159, −7.68365236451526006015633337915, −6.356325876535264512698561509317, −5.35304236970681056014002432659, −3.56255099453710882211583454144, −1.25789081481102820777942792202,
1.14925444556479764746698725051, 2.3192269202154278593883668817, 4.33110955614134678933807844468, 5.29060490768283521764685539615, 7.519873247443365282918711524094, 8.93972913917301175272344173359, 9.549574856620137996414649349069, 11.19100269317147973352990666374, 12.04141344919678500499340622462, 13.22618030672355359572375503351, 14.238931152781543200707290565661, 15.9567580810550543578612162473, 17.38862770362879957130889312663, 17.93521327780911993553139591895, 19.23436413697557870982424486514, 20.67591875290164726552228309725, 20.88156804797443327874163566328, 22.13798256546795180331913305354, 23.41014877619823327507216565218, 24.69756203686506415732786101647, 25.72219828991588912555043297519, 27.022106413675827369979539757753, 28.12546385284803961805033890710, 28.52498165456354679567420205984, 29.74951774798204875030212336989