L(s) = 1 | + (0.809 + 0.587i)2-s + (0.309 + 0.951i)4-s + (0.5 + 0.866i)5-s + (−0.978 − 0.207i)7-s + (−0.309 + 0.951i)8-s + (−0.104 + 0.994i)10-s + (−0.669 + 0.743i)11-s + (0.913 + 0.406i)13-s + (−0.669 − 0.743i)14-s + (−0.809 + 0.587i)16-s + (−0.669 − 0.743i)17-s + (0.913 − 0.406i)19-s + (−0.669 + 0.743i)20-s + (−0.978 + 0.207i)22-s + (−0.309 + 0.951i)23-s + ⋯ |
L(s) = 1 | + (0.809 + 0.587i)2-s + (0.309 + 0.951i)4-s + (0.5 + 0.866i)5-s + (−0.978 − 0.207i)7-s + (−0.309 + 0.951i)8-s + (−0.104 + 0.994i)10-s + (−0.669 + 0.743i)11-s + (0.913 + 0.406i)13-s + (−0.669 − 0.743i)14-s + (−0.809 + 0.587i)16-s + (−0.669 − 0.743i)17-s + (0.913 − 0.406i)19-s + (−0.669 + 0.743i)20-s + (−0.978 + 0.207i)22-s + (−0.309 + 0.951i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 93 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.729 + 0.684i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 93 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.729 + 0.684i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8532789243 + 2.155920076i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8532789243 + 2.155920076i\) |
\(L(1)\) |
\(\approx\) |
\(1.232997979 + 0.9916298350i\) |
\(L(1)\) |
\(\approx\) |
\(1.232997979 + 0.9916298350i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 31 | \( 1 \) |
good | 2 | \( 1 + (0.809 + 0.587i)T \) |
| 5 | \( 1 + (0.5 + 0.866i)T \) |
| 7 | \( 1 + (-0.978 - 0.207i)T \) |
| 11 | \( 1 + (-0.669 + 0.743i)T \) |
| 13 | \( 1 + (0.913 + 0.406i)T \) |
| 17 | \( 1 + (-0.669 - 0.743i)T \) |
| 19 | \( 1 + (0.913 - 0.406i)T \) |
| 23 | \( 1 + (-0.309 + 0.951i)T \) |
| 29 | \( 1 + (0.809 + 0.587i)T \) |
| 37 | \( 1 + (-0.5 + 0.866i)T \) |
| 41 | \( 1 + (0.104 - 0.994i)T \) |
| 43 | \( 1 + (0.913 - 0.406i)T \) |
| 47 | \( 1 + (0.809 - 0.587i)T \) |
| 53 | \( 1 + (0.978 - 0.207i)T \) |
| 59 | \( 1 + (0.104 + 0.994i)T \) |
| 61 | \( 1 + T \) |
| 67 | \( 1 + (-0.5 - 0.866i)T \) |
| 71 | \( 1 + (0.978 - 0.207i)T \) |
| 73 | \( 1 + (0.669 - 0.743i)T \) |
| 79 | \( 1 + (0.669 + 0.743i)T \) |
| 83 | \( 1 + (0.104 - 0.994i)T \) |
| 89 | \( 1 + (-0.309 - 0.951i)T \) |
| 97 | \( 1 + (0.309 + 0.951i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−29.5140437299770324818220376867, −28.71150961327635399028646616724, −28.17397058176988054677064076403, −26.46725029984904873777733975245, −25.15378639790764198223742503839, −24.304014844883702720789759218193, −23.20738951607536014820611647007, −22.15346358945085234566182872654, −21.17060043850818447089663591959, −20.29942563151336910897922309670, −19.23212281189195953889758772074, −18.05843692159342656264779889324, −16.29228065269991650577085708608, −15.669559849626473721656208066580, −13.94321357919742457471550119198, −13.11941571560459954230238128403, −12.36322628784483755286665521904, −10.8433243690521840704458413744, −9.76778487104001650388442822748, −8.49000357803943915255146142671, −6.28516530249868565655942927399, −5.52452636760870719335903888118, −3.968526952211713335981937438991, −2.576108328147856771126141710282, −0.80940569190139891535422525176,
2.51057630812853040749218709993, 3.67988065459814246704944252638, 5.34823730268362770616945078658, 6.605727144843621723574885248915, 7.34512223821122480639509203486, 9.197631181347154230849709163525, 10.575301225639583145132579035940, 11.937044962250787749528267328364, 13.39232796213848580740382954218, 13.85607689880894023375626371511, 15.40453019667875389807259551258, 16.02384426922126461010597543528, 17.515876779305694396430381501033, 18.42408670601955960782889642703, 20.02971023573311749429598303665, 21.185806871902873278008904077332, 22.31899521588450562546307799662, 22.910869342395958933575564540050, 23.97514824733979719701865960985, 25.53705776328311146803117789112, 25.82128951008750846671967212310, 26.86212819815355957082661440640, 28.76047439234918153436552588922, 29.50289899643670872206547400074, 30.70247198439663736043188688025