L(s) = 1 | + (−0.755 + 0.654i)3-s + (−0.909 − 0.415i)7-s + (0.142 − 0.989i)9-s + (−0.959 − 0.281i)11-s + (−0.909 + 0.415i)13-s + (−0.540 + 0.841i)17-s + (−0.841 + 0.540i)19-s + (0.959 − 0.281i)21-s + (0.540 + 0.841i)27-s + (0.841 + 0.540i)29-s + (0.654 − 0.755i)31-s + (0.909 − 0.415i)33-s + (0.989 + 0.142i)37-s + (0.415 − 0.909i)39-s + (−0.142 − 0.989i)41-s + ⋯ |
L(s) = 1 | + (−0.755 + 0.654i)3-s + (−0.909 − 0.415i)7-s + (0.142 − 0.989i)9-s + (−0.959 − 0.281i)11-s + (−0.909 + 0.415i)13-s + (−0.540 + 0.841i)17-s + (−0.841 + 0.540i)19-s + (0.959 − 0.281i)21-s + (0.540 + 0.841i)27-s + (0.841 + 0.540i)29-s + (0.654 − 0.755i)31-s + (0.909 − 0.415i)33-s + (0.989 + 0.142i)37-s + (0.415 − 0.909i)39-s + (−0.142 − 0.989i)41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 920 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.998 - 0.0543i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 920 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.998 - 0.0543i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.6047015980 + 0.01645214523i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6047015980 + 0.01645214523i\) |
\(L(1)\) |
\(\approx\) |
\(0.6269735730 + 0.07958220798i\) |
\(L(1)\) |
\(\approx\) |
\(0.6269735730 + 0.07958220798i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 23 | \( 1 \) |
good | 3 | \( 1 + (-0.755 + 0.654i)T \) |
| 7 | \( 1 + (-0.909 - 0.415i)T \) |
| 11 | \( 1 + (-0.959 - 0.281i)T \) |
| 13 | \( 1 + (-0.909 + 0.415i)T \) |
| 17 | \( 1 + (-0.540 + 0.841i)T \) |
| 19 | \( 1 + (-0.841 + 0.540i)T \) |
| 29 | \( 1 + (0.841 + 0.540i)T \) |
| 31 | \( 1 + (0.654 - 0.755i)T \) |
| 37 | \( 1 + (0.989 + 0.142i)T \) |
| 41 | \( 1 + (-0.142 - 0.989i)T \) |
| 43 | \( 1 + (-0.755 + 0.654i)T \) |
| 47 | \( 1 - iT \) |
| 53 | \( 1 + (0.909 + 0.415i)T \) |
| 59 | \( 1 + (-0.415 - 0.909i)T \) |
| 61 | \( 1 + (0.654 - 0.755i)T \) |
| 67 | \( 1 + (-0.281 - 0.959i)T \) |
| 71 | \( 1 + (0.959 - 0.281i)T \) |
| 73 | \( 1 + (-0.540 - 0.841i)T \) |
| 79 | \( 1 + (0.415 + 0.909i)T \) |
| 83 | \( 1 + (0.989 + 0.142i)T \) |
| 89 | \( 1 + (0.654 + 0.755i)T \) |
| 97 | \( 1 + (0.989 - 0.142i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−21.973538749373506282221770485831, −21.359756329929858089615015194154, −20.06001601607277154703379877665, −19.455429771895507696353610953656, −18.67028867519940636831082236532, −17.91469573852870639980558829983, −17.30819464144572900765626779975, −16.28981915857324455027715541461, −15.71763134753731950838772876557, −14.824220732760731668639378308130, −13.46897939497077198302417688688, −13.0632517395356043769634884038, −12.25527867182378843717780197173, −11.57325319298434959749129902871, −10.46152641207911092700043396490, −9.9062999470109271922902144593, −8.72887227326944538675467355791, −7.72157867726429018680578489130, −6.90925976792935583384400088512, −6.206302675268472209743903722022, −5.20769721363102363828558923378, −4.53325230722659985825541088988, −2.77930694196160986015447082680, −2.35737231439376704985405761136, −0.659474409966243867715864539224,
0.47713838217871774340607542841, 2.21095257583413925809556293064, 3.37539855043456501320976643106, 4.26558311561049436457064569974, 5.084442531119024945967649375950, 6.16697651694312513096386421441, 6.6935546766773281911526312059, 7.88377142605561245818248218829, 8.95234912869965303231203419456, 9.9678091933790303971796737317, 10.37202335796585906431157110249, 11.2147639770226913531801713218, 12.291605611789351430607280482056, 12.853397925286485875156114959585, 13.81991759906273616810217612335, 14.99155262367215034696275811425, 15.52657220277786939000522986340, 16.54569890725457616414435216749, 16.850488805668984725045940826035, 17.78345080342730806449055329834, 18.726646275329686643100748224198, 19.52017594757137669807558826161, 20.35246070811370139719970382494, 21.353951642399393676221891446506, 21.8041229930896167106155106227