L(s) = 1 | + (−0.866 + 0.5i)2-s + (0.5 − 0.866i)3-s + (0.5 − 0.866i)4-s + (0.866 − 0.5i)5-s + i·6-s + i·8-s + (−0.5 − 0.866i)9-s + (−0.5 + 0.866i)10-s + (−0.866 − 0.5i)11-s + (−0.5 − 0.866i)12-s − i·15-s + (−0.5 − 0.866i)16-s + (−0.5 + 0.866i)17-s + (0.866 + 0.5i)18-s + (0.866 − 0.5i)19-s − i·20-s + ⋯ |
L(s) = 1 | + (−0.866 + 0.5i)2-s + (0.5 − 0.866i)3-s + (0.5 − 0.866i)4-s + (0.866 − 0.5i)5-s + i·6-s + i·8-s + (−0.5 − 0.866i)9-s + (−0.5 + 0.866i)10-s + (−0.866 − 0.5i)11-s + (−0.5 − 0.866i)12-s − i·15-s + (−0.5 − 0.866i)16-s + (−0.5 + 0.866i)17-s + (0.866 + 0.5i)18-s + (0.866 − 0.5i)19-s − i·20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 91 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.637 - 0.770i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 91 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.637 - 0.770i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7657747012 - 0.3604868643i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7657747012 - 0.3604868643i\) |
\(L(1)\) |
\(\approx\) |
\(0.8651577362 - 0.2028903159i\) |
\(L(1)\) |
\(\approx\) |
\(0.8651577362 - 0.2028903159i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + (-0.866 + 0.5i)T \) |
| 3 | \( 1 + (0.5 - 0.866i)T \) |
| 5 | \( 1 + (0.866 - 0.5i)T \) |
| 11 | \( 1 + (-0.866 - 0.5i)T \) |
| 17 | \( 1 + (-0.5 + 0.866i)T \) |
| 19 | \( 1 + (0.866 - 0.5i)T \) |
| 23 | \( 1 + (0.5 + 0.866i)T \) |
| 29 | \( 1 + T \) |
| 31 | \( 1 + (-0.866 - 0.5i)T \) |
| 37 | \( 1 + (0.866 - 0.5i)T \) |
| 41 | \( 1 + iT \) |
| 43 | \( 1 - T \) |
| 47 | \( 1 + (-0.866 + 0.5i)T \) |
| 53 | \( 1 + (-0.5 + 0.866i)T \) |
| 59 | \( 1 + (0.866 + 0.5i)T \) |
| 61 | \( 1 + (0.5 + 0.866i)T \) |
| 67 | \( 1 + (0.866 + 0.5i)T \) |
| 71 | \( 1 - iT \) |
| 73 | \( 1 + (0.866 + 0.5i)T \) |
| 79 | \( 1 + (-0.5 - 0.866i)T \) |
| 83 | \( 1 + iT \) |
| 89 | \( 1 + (-0.866 + 0.5i)T \) |
| 97 | \( 1 + iT \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−30.6010293485636659872179331398, −29.13437188810186350300068340366, −28.60075970974641706470454234834, −27.17770385919618291992935625274, −26.55067336173291441490356284926, −25.59956023400253511771855585649, −24.88284401914443322082753847775, −22.70127581955659015025923538266, −21.75009763893202921179089076159, −20.815315300102989333667862443025, −20.1247144208488369304153021725, −18.66049291317440223552968636294, −17.84293614327427426734017085010, −16.567785289957127576545526421677, −15.57132931908963065921872661791, −14.226089647962232353982774223228, −12.98147398595974700884039528719, −11.27368138345296330204364528196, −10.22594536471817715540908411428, −9.58346343908930289341974175994, −8.343386395672777055876003531631, −6.951668043645201690633250233820, −5.03913284562299277258908175247, −3.20074050304890446659437511649, −2.19620943368251717288900547907,
1.25858041899187614885752249552, 2.619316045247704945489546699328, 5.38300089059643205137669271200, 6.45687753349337531030482413280, 7.78069097611022173563075403942, 8.75927948560909455024607451333, 9.77911252264840168802779305697, 11.26084166249690618928916871863, 12.95316143753736937065313625806, 13.81480089038691559265579045635, 15.081725613523206108249118541906, 16.4007591610593073109038250323, 17.623759135015453100908317669511, 18.21357092193568028113428257116, 19.430905196451587086132749219689, 20.32715428772526865032699144219, 21.50872649499381081583439759013, 23.489571176995895220581312669582, 24.225532837203689908588874785837, 25.11314895424931410819903527331, 25.93097453451027384964477963550, 26.8093865774428349645567936112, 28.46504323736611175441827549260, 28.992536596024305642409741567194, 29.96934325606346271953899464608