# Properties

 Label 1-91-91.31-r0-0-0 Degree $1$ Conductor $91$ Sign $0.102 + 0.994i$ Analytic cond. $0.422602$ Root an. cond. $0.422602$ Motivic weight $0$ Arithmetic yes Rational no Primitive yes Self-dual no Analytic rank $0$

# Related objects

## Dirichlet series

 L(s)  = 1 + (0.866 + 0.5i)2-s + (0.5 + 0.866i)3-s + (0.5 + 0.866i)4-s + (−0.866 − 0.5i)5-s + i·6-s + i·8-s + (−0.5 + 0.866i)9-s + (−0.5 − 0.866i)10-s + (0.866 − 0.5i)11-s + (−0.5 + 0.866i)12-s − i·15-s + (−0.5 + 0.866i)16-s + (−0.5 − 0.866i)17-s + (−0.866 + 0.5i)18-s + (−0.866 − 0.5i)19-s − i·20-s + ⋯
 L(s)  = 1 + (0.866 + 0.5i)2-s + (0.5 + 0.866i)3-s + (0.5 + 0.866i)4-s + (−0.866 − 0.5i)5-s + i·6-s + i·8-s + (−0.5 + 0.866i)9-s + (−0.5 − 0.866i)10-s + (0.866 − 0.5i)11-s + (−0.5 + 0.866i)12-s − i·15-s + (−0.5 + 0.866i)16-s + (−0.5 − 0.866i)17-s + (−0.866 + 0.5i)18-s + (−0.866 − 0.5i)19-s − i·20-s + ⋯

## Functional equation

\begin{aligned}\Lambda(s)=\mathstrut & 91 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.102 + 0.994i)\, \overline{\Lambda}(1-s) \end{aligned}
\begin{aligned}\Lambda(s)=\mathstrut & 91 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.102 + 0.994i)\, \overline{\Lambda}(1-s) \end{aligned}

## Invariants

 Degree: $$1$$ Conductor: $$91$$    =    $$7 \cdot 13$$ Sign: $0.102 + 0.994i$ Analytic conductor: $$0.422602$$ Root analytic conductor: $$0.422602$$ Motivic weight: $$0$$ Rational: no Arithmetic: yes Character: $\chi_{91} (31, \cdot )$ Primitive: yes Self-dual: no Analytic rank: $$0$$ Selberg data: $$(1,\ 91,\ (0:\ ),\ 0.102 + 0.994i)$$

## Particular Values

 $$L(\frac{1}{2})$$ $$\approx$$ $$1.186646655 + 1.070475057i$$ $$L(\frac12)$$ $$\approx$$ $$1.186646655 + 1.070475057i$$ $$L(1)$$ $$\approx$$ $$1.386500283 + 0.8004514847i$$ $$L(1)$$ $$\approx$$ $$1.386500283 + 0.8004514847i$$

## Euler product

$$L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}$$
$p$$F_p(T)$
bad7 $$1$$
13 $$1$$
good2 $$1 + (0.866 + 0.5i)T$$
3 $$1 + (0.5 + 0.866i)T$$
5 $$1 + (-0.866 - 0.5i)T$$
11 $$1 + (0.866 - 0.5i)T$$
17 $$1 + (-0.5 - 0.866i)T$$
19 $$1 + (-0.866 - 0.5i)T$$
23 $$1 + (0.5 - 0.866i)T$$
29 $$1 + T$$
31 $$1 + (0.866 - 0.5i)T$$
37 $$1 + (-0.866 - 0.5i)T$$
41 $$1 + iT$$
43 $$1 - T$$
47 $$1 + (0.866 + 0.5i)T$$
53 $$1 + (-0.5 - 0.866i)T$$
59 $$1 + (-0.866 + 0.5i)T$$
61 $$1 + (0.5 - 0.866i)T$$
67 $$1 + (-0.866 + 0.5i)T$$
71 $$1 - iT$$
73 $$1 + (-0.866 + 0.5i)T$$
79 $$1 + (-0.5 + 0.866i)T$$
83 $$1 + iT$$
89 $$1 + (0.866 + 0.5i)T$$
97 $$1 + iT$$
$$L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}$$