L(s) = 1 | + (0.5 + 0.866i)2-s + (0.5 − 0.866i)3-s + (−0.5 + 0.866i)4-s + (−0.5 − 0.866i)5-s + 6-s − 8-s + (−0.5 − 0.866i)9-s + (0.5 − 0.866i)10-s + (0.5 − 0.866i)11-s + (0.5 + 0.866i)12-s − 15-s + (−0.5 − 0.866i)16-s + (0.5 − 0.866i)17-s + (0.5 − 0.866i)18-s + (−0.5 − 0.866i)19-s + 20-s + ⋯ |
L(s) = 1 | + (0.5 + 0.866i)2-s + (0.5 − 0.866i)3-s + (−0.5 + 0.866i)4-s + (−0.5 − 0.866i)5-s + 6-s − 8-s + (−0.5 − 0.866i)9-s + (0.5 − 0.866i)10-s + (0.5 − 0.866i)11-s + (0.5 + 0.866i)12-s − 15-s + (−0.5 − 0.866i)16-s + (0.5 − 0.866i)17-s + (0.5 − 0.866i)18-s + (−0.5 − 0.866i)19-s + 20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 91 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.386 - 0.922i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 91 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.386 - 0.922i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.504706088 - 1.000903239i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.504706088 - 1.000903239i\) |
\(L(1)\) |
\(\approx\) |
\(1.306745977 - 0.1665233039i\) |
\(L(1)\) |
\(\approx\) |
\(1.306745977 - 0.1665233039i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + (0.5 + 0.866i)T \) |
| 3 | \( 1 + (0.5 - 0.866i)T \) |
| 5 | \( 1 + (-0.5 - 0.866i)T \) |
| 11 | \( 1 + (0.5 - 0.866i)T \) |
| 17 | \( 1 + (0.5 - 0.866i)T \) |
| 19 | \( 1 + (-0.5 - 0.866i)T \) |
| 23 | \( 1 + (-0.5 - 0.866i)T \) |
| 29 | \( 1 + T \) |
| 31 | \( 1 + (-0.5 + 0.866i)T \) |
| 37 | \( 1 + (0.5 + 0.866i)T \) |
| 41 | \( 1 + T \) |
| 43 | \( 1 + T \) |
| 47 | \( 1 + (-0.5 - 0.866i)T \) |
| 53 | \( 1 + (-0.5 + 0.866i)T \) |
| 59 | \( 1 + (-0.5 + 0.866i)T \) |
| 61 | \( 1 + (0.5 + 0.866i)T \) |
| 67 | \( 1 + (0.5 - 0.866i)T \) |
| 71 | \( 1 - T \) |
| 73 | \( 1 + (-0.5 + 0.866i)T \) |
| 79 | \( 1 + (-0.5 - 0.866i)T \) |
| 83 | \( 1 + T \) |
| 89 | \( 1 + (-0.5 - 0.866i)T \) |
| 97 | \( 1 + T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−30.5690110672141188440946001971, −29.536826785317533869711824050461, −27.974243357232448226811620433973, −27.51935959451513790935647472949, −26.361742033861576574544071491763, −25.29235627332446817275733696687, −23.55277520209699859347871192793, −22.67500572061811618724928277744, −21.82086823465023602450306573730, −20.84733527722235905177800416574, −19.71972897390923796018419442845, −19.08580329650619040334706125765, −17.602528284687001081456508207374, −15.83691560578737825456209740063, −14.73429735760141850829193096301, −14.28238800842223436674824491468, −12.62461363938164221858114845924, −11.37035677219510489379470205458, −10.36900169137100635837378535378, −9.49872928602734950081577663438, −7.903412988647282315123237368973, −6.00467768010082878453741185086, −4.31762644950579175302745385805, −3.538639893272889006438356656219, −2.123672830375553716638849142377,
0.67381266013933904378462830049, 3.02493877661752143037337599248, 4.4828371817773077550661631318, 5.99432063024084267215745204359, 7.21917470510807733702447984152, 8.35816835836200369408634060784, 9.06593527613713344161429734749, 11.68298902263089414125491042482, 12.56657795587557223759438541188, 13.59942260220739947763125399939, 14.50428177625452688718919499606, 15.852181628259807512328984255227, 16.803229500088949914083945692626, 17.98515431639761199473215071212, 19.224149684770326792648040992042, 20.33699795265834074117345840631, 21.52463049554400950557045997504, 22.98551583422741841488553753855, 23.89370516666756552002359130641, 24.58103290893348022392675285393, 25.38318299131327214298723028351, 26.59233577611392797855597073238, 27.62231099111695430996623597136, 29.16288562876502989062581471393, 30.28151969593039861798781379048