L(s) = 1 | + (−0.0654 − 0.997i)3-s + (−0.659 − 0.751i)5-s + (−0.991 + 0.130i)9-s + (0.442 + 0.896i)11-s + (−0.980 − 0.195i)13-s + (−0.707 + 0.707i)15-s + (−0.965 + 0.258i)17-s + (−0.946 + 0.321i)19-s + (−0.130 − 0.991i)23-s + (−0.130 + 0.991i)25-s + (0.195 + 0.980i)27-s + (0.555 + 0.831i)29-s + (−0.866 − 0.5i)31-s + (0.866 − 0.5i)33-s + (0.751 − 0.659i)37-s + ⋯ |
L(s) = 1 | + (−0.0654 − 0.997i)3-s + (−0.659 − 0.751i)5-s + (−0.991 + 0.130i)9-s + (0.442 + 0.896i)11-s + (−0.980 − 0.195i)13-s + (−0.707 + 0.707i)15-s + (−0.965 + 0.258i)17-s + (−0.946 + 0.321i)19-s + (−0.130 − 0.991i)23-s + (−0.130 + 0.991i)25-s + (0.195 + 0.980i)27-s + (0.555 + 0.831i)29-s + (−0.866 − 0.5i)31-s + (0.866 − 0.5i)33-s + (0.751 − 0.659i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 896 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.801 - 0.597i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 896 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.801 - 0.597i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8637526782 - 0.2863394570i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8637526782 - 0.2863394570i\) |
\(L(1)\) |
\(\approx\) |
\(0.7025391717 - 0.2751702183i\) |
\(L(1)\) |
\(\approx\) |
\(0.7025391717 - 0.2751702183i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 \) |
good | 3 | \( 1 + (-0.0654 - 0.997i)T \) |
| 5 | \( 1 + (-0.659 - 0.751i)T \) |
| 11 | \( 1 + (0.442 + 0.896i)T \) |
| 13 | \( 1 + (-0.980 - 0.195i)T \) |
| 17 | \( 1 + (-0.965 + 0.258i)T \) |
| 19 | \( 1 + (-0.946 + 0.321i)T \) |
| 23 | \( 1 + (-0.130 - 0.991i)T \) |
| 29 | \( 1 + (0.555 + 0.831i)T \) |
| 31 | \( 1 + (-0.866 - 0.5i)T \) |
| 37 | \( 1 + (0.751 - 0.659i)T \) |
| 41 | \( 1 + (0.923 + 0.382i)T \) |
| 43 | \( 1 + (-0.831 - 0.555i)T \) |
| 47 | \( 1 + (0.258 - 0.965i)T \) |
| 53 | \( 1 + (0.442 + 0.896i)T \) |
| 59 | \( 1 + (-0.321 + 0.946i)T \) |
| 61 | \( 1 + (0.896 + 0.442i)T \) |
| 67 | \( 1 + (0.0654 + 0.997i)T \) |
| 71 | \( 1 + (-0.382 - 0.923i)T \) |
| 73 | \( 1 + (-0.608 - 0.793i)T \) |
| 79 | \( 1 + (-0.965 - 0.258i)T \) |
| 83 | \( 1 + (-0.195 + 0.980i)T \) |
| 89 | \( 1 + (0.793 + 0.608i)T \) |
| 97 | \( 1 - iT \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−21.81244493398844707114551290763, −21.38179126707534194850077652690, −20.052586301008010573205053429094, −19.60874511917424294345870622955, −18.87505416266353851811265379049, −17.67251108171835211185010708189, −17.06044337794007689869389462788, −16.04776175862012894646543240239, −15.53980449005619197531713592136, −14.64816049224540190046072512823, −14.17587909245545618922125296494, −13.00687231886592590642120455210, −11.64533083844140896074781250145, −11.374100170764284283463015642257, −10.50614679582921156447453420823, −9.62306909426569369789216869243, −8.78840933577222523008451508906, −7.90053186529394894775329084095, −6.7994322241166651256203474908, −6.012838151278841198496559491027, −4.80278964193385600073237938636, −4.076404259748137621267343992318, −3.19636193446112540819737461267, −2.319429697424287783471580998300, −0.36663959908119301983663033137,
0.52523837355241577020708980417, 1.74707994846313867033740643063, 2.54819080431676435474969187764, 4.05288183322684956950843667072, 4.764902758640330146831437967343, 5.88376380348951799489072968102, 6.92999064940783366705654004630, 7.49931394831713339860973434330, 8.49880457612425414131935016787, 9.070821889885777292904944836622, 10.34895632329998757269169493896, 11.35449171188900175260867879988, 12.27665966548575236389105088483, 12.59326205816379819376570156495, 13.36389227387527086811409975130, 14.66339441418308284251722884678, 14.995877739382233697241893315457, 16.34009930498253771289436335874, 16.96892287569197211110571099371, 17.6973441881884880297604799203, 18.50136184722505966285479342818, 19.56255112776287722303410969076, 19.872850478742150006618177479935, 20.54831613389922650605618445022, 21.82249762964352304154538981324