Properties

Label 1-847-847.375-r0-0-0
Degree $1$
Conductor $847$
Sign $0.328 - 0.944i$
Analytic cond. $3.93345$
Root an. cond. $3.93345$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.580 + 0.814i)2-s + (−0.5 − 0.866i)3-s + (−0.327 + 0.945i)4-s + (0.723 − 0.690i)5-s + (0.415 − 0.909i)6-s + (−0.959 + 0.281i)8-s + (−0.5 + 0.866i)9-s + (0.981 + 0.189i)10-s + (0.981 − 0.189i)12-s + (−0.654 − 0.755i)13-s + (−0.959 − 0.281i)15-s + (−0.786 − 0.618i)16-s + (0.0475 − 0.998i)17-s + (−0.995 + 0.0950i)18-s + (0.0475 + 0.998i)19-s + (0.415 + 0.909i)20-s + ⋯
L(s)  = 1  + (0.580 + 0.814i)2-s + (−0.5 − 0.866i)3-s + (−0.327 + 0.945i)4-s + (0.723 − 0.690i)5-s + (0.415 − 0.909i)6-s + (−0.959 + 0.281i)8-s + (−0.5 + 0.866i)9-s + (0.981 + 0.189i)10-s + (0.981 − 0.189i)12-s + (−0.654 − 0.755i)13-s + (−0.959 − 0.281i)15-s + (−0.786 − 0.618i)16-s + (0.0475 − 0.998i)17-s + (−0.995 + 0.0950i)18-s + (0.0475 + 0.998i)19-s + (0.415 + 0.909i)20-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 847 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.328 - 0.944i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 847 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.328 - 0.944i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(1\)
Conductor: \(847\)    =    \(7 \cdot 11^{2}\)
Sign: $0.328 - 0.944i$
Analytic conductor: \(3.93345\)
Root analytic conductor: \(3.93345\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{847} (375, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((1,\ 847,\ (0:\ ),\ 0.328 - 0.944i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.034284616 - 0.7353160353i\)
\(L(\frac12)\) \(\approx\) \(1.034284616 - 0.7353160353i\)
\(L(1)\) \(\approx\) \(1.121050775 - 0.05196274525i\)
\(L(1)\) \(\approx\) \(1.121050775 - 0.05196274525i\)

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 \)
11 \( 1 \)
good2 \( 1 + (-0.580 - 0.814i)T \)
3 \( 1 + (0.5 + 0.866i)T \)
5 \( 1 + (-0.723 + 0.690i)T \)
13 \( 1 + (0.654 + 0.755i)T \)
17 \( 1 + (-0.0475 + 0.998i)T \)
19 \( 1 + (-0.0475 - 0.998i)T \)
23 \( 1 + (0.786 + 0.618i)T \)
29 \( 1 + (-0.841 + 0.540i)T \)
31 \( 1 + (-0.981 - 0.189i)T \)
37 \( 1 + (0.327 + 0.945i)T \)
41 \( 1 + (-0.415 + 0.909i)T \)
43 \( 1 + (0.959 - 0.281i)T \)
47 \( 1 + (0.995 + 0.0950i)T \)
53 \( 1 + (0.786 - 0.618i)T \)
59 \( 1 + (-0.580 + 0.814i)T \)
61 \( 1 + (0.995 + 0.0950i)T \)
67 \( 1 + (0.995 - 0.0950i)T \)
71 \( 1 + (-0.841 + 0.540i)T \)
73 \( 1 + (-0.928 + 0.371i)T \)
79 \( 1 + (-0.723 + 0.690i)T \)
83 \( 1 + (0.142 + 0.989i)T \)
89 \( 1 + (0.888 - 0.458i)T \)
97 \( 1 + (0.959 - 0.281i)T \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−22.098412514166626615268474898326, −21.46179643817375450797863108833, −21.1619369714350103624402577225, −19.90692620309212209302507519799, −19.35314635478800846938786698270, −18.206886801292755200345558730166, −17.60073507677704250928580138040, −16.75275025215991712545903614514, −15.53929660919305611560646265928, −14.9408234889385098817689375150, −14.16577375830324722442385806881, −13.44605322394153290732310809971, −12.330305980713929887630760820256, −11.528841207179364834007037385028, −10.88546365710306498392761600748, −9.92718988152041309904810246466, −9.701929510016165320500161302123, −8.53792585391659521226003934141, −6.73073630630794849484448705985, −6.19872895660787109129380001801, −5.16552711122391575596129442103, −4.4727428458803034867306069699, −3.42222909347870516805902459677, −2.59071374322298473713418951653, −1.44678443794241984416315290854, 0.49096618838612021442682461821, 1.99381485989919997537401046054, 2.9799315822496870668550209721, 4.54303242760888784389976695773, 5.227464651427070748792458316461, 5.985498348738117191744261751359, 6.68721002237091399093770582015, 7.79065933244723984906963081771, 8.27912731132225013683103052887, 9.458668194659431917691591850584, 10.44971927085070944941991578833, 11.94758442040147440239164865625, 12.28131324909177570615304073350, 13.081962536479331759918318536044, 13.900660242155900696119809556991, 14.36106822603220545643839329428, 15.71505261787641502100714048602, 16.42957800873101427785932600495, 17.11972642469727302309401659383, 17.817620286288169250105670341988, 18.32961799593847074120726003463, 19.570773693449549592505749642554, 20.55150435868124181723685025918, 21.2797325007864893676206966850, 22.31587403554979235543031653657

Graph of the $Z$-function along the critical line