L(s) = 1 | + (−0.640 − 0.768i)2-s + (−0.913 + 0.406i)3-s + (−0.179 + 0.983i)4-s + (0.595 + 0.803i)5-s + (0.897 + 0.441i)6-s + (0.870 − 0.491i)8-s + (0.669 − 0.743i)9-s + (0.235 − 0.971i)10-s + (−0.235 − 0.971i)12-s + (−0.0285 − 0.999i)13-s + (−0.870 − 0.491i)15-s + (−0.935 − 0.353i)16-s + (−0.999 + 0.0190i)17-s + (−0.999 − 0.0380i)18-s + (0.820 − 0.572i)19-s + (−0.897 + 0.441i)20-s + ⋯ |
L(s) = 1 | + (−0.640 − 0.768i)2-s + (−0.913 + 0.406i)3-s + (−0.179 + 0.983i)4-s + (0.595 + 0.803i)5-s + (0.897 + 0.441i)6-s + (0.870 − 0.491i)8-s + (0.669 − 0.743i)9-s + (0.235 − 0.971i)10-s + (−0.235 − 0.971i)12-s + (−0.0285 − 0.999i)13-s + (−0.870 − 0.491i)15-s + (−0.935 − 0.353i)16-s + (−0.999 + 0.0190i)17-s + (−0.999 − 0.0380i)18-s + (0.820 − 0.572i)19-s + (−0.897 + 0.441i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 847 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.924 - 0.380i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 847 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.924 - 0.380i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.04304880320 - 0.2180009483i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.04304880320 - 0.2180009483i\) |
\(L(1)\) |
\(\approx\) |
\(0.5106905279 - 0.09557998754i\) |
\(L(1)\) |
\(\approx\) |
\(0.5106905279 - 0.09557998754i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (-0.640 - 0.768i)T \) |
| 3 | \( 1 + (-0.913 + 0.406i)T \) |
| 5 | \( 1 + (0.595 + 0.803i)T \) |
| 13 | \( 1 + (-0.0285 - 0.999i)T \) |
| 17 | \( 1 + (-0.999 + 0.0190i)T \) |
| 19 | \( 1 + (0.820 - 0.572i)T \) |
| 23 | \( 1 + (0.0475 - 0.998i)T \) |
| 29 | \( 1 + (-0.974 - 0.226i)T \) |
| 31 | \( 1 + (-0.997 + 0.0760i)T \) |
| 37 | \( 1 + (-0.991 - 0.132i)T \) |
| 41 | \( 1 + (0.696 - 0.717i)T \) |
| 43 | \( 1 + (-0.415 + 0.909i)T \) |
| 47 | \( 1 + (-0.999 + 0.0380i)T \) |
| 53 | \( 1 + (-0.935 + 0.353i)T \) |
| 59 | \( 1 + (0.969 - 0.244i)T \) |
| 61 | \( 1 + (0.345 + 0.938i)T \) |
| 67 | \( 1 + (-0.786 - 0.618i)T \) |
| 71 | \( 1 + (-0.921 + 0.389i)T \) |
| 73 | \( 1 + (0.449 - 0.893i)T \) |
| 79 | \( 1 + (-0.953 - 0.299i)T \) |
| 83 | \( 1 + (-0.254 - 0.967i)T \) |
| 89 | \( 1 + (-0.981 - 0.189i)T \) |
| 97 | \( 1 + (-0.993 - 0.113i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−22.537148867758883557164626228195, −21.88841642767342390403492695288, −20.821753377898893127417467886489, −19.866527784341077196068598913129, −19.01834891973850663720299666994, −18.1735247716091860025115934411, −17.619787223330891042850558696057, −16.85552864204301663408093348033, −16.310912129470160489383713531654, −15.63611035936204114373358950372, −14.36030873476172602092876751170, −13.55463433234449046463852812129, −12.877688799342273670416519726689, −11.70493810778900703970722902275, −11.03686694925233406192161744848, −9.88471162351865008621603679158, −9.3166082553299976360236063887, −8.36376112593312920298472615190, −7.3128847475552597405854295778, −6.637540865171839705031174145244, −5.66087831914640970344654739231, −5.16216444680440534426988391981, −4.14452890269201504218962508480, −1.909914343025141666101222543298, −1.395431490625941611055054848212,
0.143048455971673664061887152326, 1.578005775573391078897118902880, 2.72248734816642955969348345889, 3.60619803175014722443497224072, 4.74546174563069652258768579350, 5.74537907790338946636230160431, 6.7856758769583934304331844700, 7.51140535798551512886313786326, 8.873131068687815730556425383866, 9.638229396196335319646556548309, 10.43526753809505783642291527608, 10.96339413926917698081453711831, 11.6237344835664472626854543690, 12.74651069491596590510113882813, 13.29260030093077693136732883987, 14.55546236521391530932344056671, 15.53313292452988058146124551163, 16.34193237963749245372435790641, 17.299164448982822584669577187139, 17.88891651969943152169023040097, 18.27174674120414560384072504252, 19.27724736258248785317906892950, 20.311569755358758912101427532549, 20.94294989586298195421807046840, 21.86059142314479134593316764570