Properties

Label 1-847-847.230-r0-0-0
Degree $1$
Conductor $847$
Sign $0.604 + 0.796i$
Analytic cond. $3.93345$
Root an. cond. $3.93345$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.415 + 0.909i)2-s − 3-s + (−0.654 − 0.755i)4-s + (0.959 + 0.281i)5-s + (0.415 − 0.909i)6-s + (0.959 − 0.281i)8-s + 9-s + (−0.654 + 0.755i)10-s + (0.654 + 0.755i)12-s + (−0.654 − 0.755i)13-s + (−0.959 − 0.281i)15-s + (−0.142 + 0.989i)16-s + (0.841 + 0.540i)17-s + (−0.415 + 0.909i)18-s + (0.841 − 0.540i)19-s + (−0.415 − 0.909i)20-s + ⋯
L(s)  = 1  + (−0.415 + 0.909i)2-s − 3-s + (−0.654 − 0.755i)4-s + (0.959 + 0.281i)5-s + (0.415 − 0.909i)6-s + (0.959 − 0.281i)8-s + 9-s + (−0.654 + 0.755i)10-s + (0.654 + 0.755i)12-s + (−0.654 − 0.755i)13-s + (−0.959 − 0.281i)15-s + (−0.142 + 0.989i)16-s + (0.841 + 0.540i)17-s + (−0.415 + 0.909i)18-s + (0.841 − 0.540i)19-s + (−0.415 − 0.909i)20-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 847 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.604 + 0.796i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 847 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.604 + 0.796i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(1\)
Conductor: \(847\)    =    \(7 \cdot 11^{2}\)
Sign: $0.604 + 0.796i$
Analytic conductor: \(3.93345\)
Root analytic conductor: \(3.93345\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{847} (230, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((1,\ 847,\ (0:\ ),\ 0.604 + 0.796i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.8549213067 + 0.4244788478i\)
\(L(\frac12)\) \(\approx\) \(0.8549213067 + 0.4244788478i\)
\(L(1)\) \(\approx\) \(0.7118027606 + 0.2826493538i\)
\(L(1)\) \(\approx\) \(0.7118027606 + 0.2826493538i\)

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 \)
11 \( 1 \)
good2 \( 1 + (-0.415 + 0.909i)T \)
3 \( 1 - T \)
5 \( 1 + (0.959 + 0.281i)T \)
13 \( 1 + (-0.654 - 0.755i)T \)
17 \( 1 + (0.841 + 0.540i)T \)
19 \( 1 + (0.841 - 0.540i)T \)
23 \( 1 + (-0.142 + 0.989i)T \)
29 \( 1 + (-0.841 + 0.540i)T \)
31 \( 1 + (0.654 - 0.755i)T \)
37 \( 1 + (-0.654 + 0.755i)T \)
41 \( 1 + (0.415 - 0.909i)T \)
43 \( 1 + (0.959 - 0.281i)T \)
47 \( 1 + (-0.415 - 0.909i)T \)
53 \( 1 + (-0.142 - 0.989i)T \)
59 \( 1 + (-0.415 - 0.909i)T \)
61 \( 1 + (0.415 + 0.909i)T \)
67 \( 1 + (0.415 - 0.909i)T \)
71 \( 1 + (0.841 - 0.540i)T \)
73 \( 1 + (-0.142 + 0.989i)T \)
79 \( 1 + (0.959 + 0.281i)T \)
83 \( 1 + (-0.142 - 0.989i)T \)
89 \( 1 + (-0.841 - 0.540i)T \)
97 \( 1 + (0.959 - 0.281i)T \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−21.96715854738155889480500196612, −21.016546783072481665786243520195, −20.793790853894207232292368034118, −19.49355285183449565772798744999, −18.63284586822331412011220620692, −18.07525482196784493683172838982, −17.28737343528554738369841572738, −16.65128192875111391247785586273, −16.08546219316828608512066435343, −14.3784363052246341942006821450, −13.77814345025073843854251456958, −12.62960198150401938231409190886, −12.25884040284379736735588620350, −11.36210795006969805331956483979, −10.47997025040049650775094765221, −9.72508040120611691063016858887, −9.2722748783349040574247867975, −7.91756640071497206907989690570, −6.97629663385027759914189763164, −5.85290530058226581563902919913, −5.00268495448212881736154244846, −4.21762206664225023499628307504, −2.82766381352585314871912157732, −1.77021320977441077932028910788, −0.88200906827333627653592169864, 0.833818089151263167006978828230, 1.927001856026559568837425765036, 3.58233323491656011894485912883, 5.087198642123074995311064851080, 5.427767334652736837772219753, 6.24402697057352732312286901409, 7.14619111752971549539892984301, 7.819701945091256410400238461707, 9.21076201248569866197873985674, 9.92999758285841976345587709596, 10.44349010206558347346466196908, 11.4702672923846907785603870800, 12.65165311451646578980316858944, 13.39168806680997534315931208281, 14.26890092869355620591547605971, 15.194217549168514946069975090231, 15.87093177552634123182953204161, 17.00299148041636521848451603221, 17.228545105870988348621391931572, 18.00728894776775526116383741200, 18.65469879978415178658503890460, 19.53685801433981870593922157901, 20.77844274158830011694183015381, 21.774223792121959946367516127117, 22.41347053397699331226243615906

Graph of the $Z$-function along the critical line