L(s) = 1 | + (−0.415 + 0.909i)2-s − 3-s + (−0.654 − 0.755i)4-s + (0.959 + 0.281i)5-s + (0.415 − 0.909i)6-s + (0.959 − 0.281i)8-s + 9-s + (−0.654 + 0.755i)10-s + (0.654 + 0.755i)12-s + (−0.654 − 0.755i)13-s + (−0.959 − 0.281i)15-s + (−0.142 + 0.989i)16-s + (0.841 + 0.540i)17-s + (−0.415 + 0.909i)18-s + (0.841 − 0.540i)19-s + (−0.415 − 0.909i)20-s + ⋯ |
L(s) = 1 | + (−0.415 + 0.909i)2-s − 3-s + (−0.654 − 0.755i)4-s + (0.959 + 0.281i)5-s + (0.415 − 0.909i)6-s + (0.959 − 0.281i)8-s + 9-s + (−0.654 + 0.755i)10-s + (0.654 + 0.755i)12-s + (−0.654 − 0.755i)13-s + (−0.959 − 0.281i)15-s + (−0.142 + 0.989i)16-s + (0.841 + 0.540i)17-s + (−0.415 + 0.909i)18-s + (0.841 − 0.540i)19-s + (−0.415 − 0.909i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 847 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.604 + 0.796i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 847 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.604 + 0.796i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8549213067 + 0.4244788478i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8549213067 + 0.4244788478i\) |
\(L(1)\) |
\(\approx\) |
\(0.7118027606 + 0.2826493538i\) |
\(L(1)\) |
\(\approx\) |
\(0.7118027606 + 0.2826493538i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (-0.415 + 0.909i)T \) |
| 3 | \( 1 - T \) |
| 5 | \( 1 + (0.959 + 0.281i)T \) |
| 13 | \( 1 + (-0.654 - 0.755i)T \) |
| 17 | \( 1 + (0.841 + 0.540i)T \) |
| 19 | \( 1 + (0.841 - 0.540i)T \) |
| 23 | \( 1 + (-0.142 + 0.989i)T \) |
| 29 | \( 1 + (-0.841 + 0.540i)T \) |
| 31 | \( 1 + (0.654 - 0.755i)T \) |
| 37 | \( 1 + (-0.654 + 0.755i)T \) |
| 41 | \( 1 + (0.415 - 0.909i)T \) |
| 43 | \( 1 + (0.959 - 0.281i)T \) |
| 47 | \( 1 + (-0.415 - 0.909i)T \) |
| 53 | \( 1 + (-0.142 - 0.989i)T \) |
| 59 | \( 1 + (-0.415 - 0.909i)T \) |
| 61 | \( 1 + (0.415 + 0.909i)T \) |
| 67 | \( 1 + (0.415 - 0.909i)T \) |
| 71 | \( 1 + (0.841 - 0.540i)T \) |
| 73 | \( 1 + (-0.142 + 0.989i)T \) |
| 79 | \( 1 + (0.959 + 0.281i)T \) |
| 83 | \( 1 + (-0.142 - 0.989i)T \) |
| 89 | \( 1 + (-0.841 - 0.540i)T \) |
| 97 | \( 1 + (0.959 - 0.281i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−21.96715854738155889480500196612, −21.016546783072481665786243520195, −20.793790853894207232292368034118, −19.49355285183449565772798744999, −18.63284586822331412011220620692, −18.07525482196784493683172838982, −17.28737343528554738369841572738, −16.65128192875111391247785586273, −16.08546219316828608512066435343, −14.3784363052246341942006821450, −13.77814345025073843854251456958, −12.62960198150401938231409190886, −12.25884040284379736735588620350, −11.36210795006969805331956483979, −10.47997025040049650775094765221, −9.72508040120611691063016858887, −9.2722748783349040574247867975, −7.91756640071497206907989690570, −6.97629663385027759914189763164, −5.85290530058226581563902919913, −5.00268495448212881736154244846, −4.21762206664225023499628307504, −2.82766381352585314871912157732, −1.77021320977441077932028910788, −0.88200906827333627653592169864,
0.833818089151263167006978828230, 1.927001856026559568837425765036, 3.58233323491656011894485912883, 5.087198642123074995311064851080, 5.427767334652736837772219753, 6.24402697057352732312286901409, 7.14619111752971549539892984301, 7.819701945091256410400238461707, 9.21076201248569866197873985674, 9.92999758285841976345587709596, 10.44349010206558347346466196908, 11.4702672923846907785603870800, 12.65165311451646578980316858944, 13.39168806680997534315931208281, 14.26890092869355620591547605971, 15.194217549168514946069975090231, 15.87093177552634123182953204161, 17.00299148041636521848451603221, 17.228545105870988348621391931572, 18.00728894776775526116383741200, 18.65469879978415178658503890460, 19.53685801433981870593922157901, 20.77844274158830011694183015381, 21.774223792121959946367516127117, 22.41347053397699331226243615906