Properties

Label 1-839-839.838-r1-0-0
Degree $1$
Conductor $839$
Sign $1$
Analytic cond. $90.1630$
Root an. cond. $90.1630$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s + 4-s + 5-s + 6-s + 7-s + 8-s + 9-s + 10-s − 11-s + 12-s − 13-s + 14-s + 15-s + 16-s − 17-s + 18-s + 19-s + 20-s + 21-s − 22-s + 23-s + 24-s + 25-s − 26-s + 27-s + 28-s + ⋯
L(s)  = 1  + 2-s + 3-s + 4-s + 5-s + 6-s + 7-s + 8-s + 9-s + 10-s − 11-s + 12-s − 13-s + 14-s + 15-s + 16-s − 17-s + 18-s + 19-s + 20-s + 21-s − 22-s + 23-s + 24-s + 25-s − 26-s + 27-s + 28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 839 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 839 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(1\)
Conductor: \(839\)
Sign: $1$
Analytic conductor: \(90.1630\)
Root analytic conductor: \(90.1630\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: $\chi_{839} (838, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((1,\ 839,\ (1:\ ),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(8.830173694\)
\(L(\frac12)\) \(\approx\) \(8.830173694\)
\(L(1)\) \(\approx\) \(3.579174166\)
\(L(1)\) \(\approx\) \(3.579174166\)

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad839 \( 1 \)
good2 \( 1 + T \)
3 \( 1 + T \)
5 \( 1 + T \)
7 \( 1 + T \)
11 \( 1 - T \)
13 \( 1 - T \)
17 \( 1 - T \)
19 \( 1 + T \)
23 \( 1 + T \)
29 \( 1 - T \)
31 \( 1 - T \)
37 \( 1 + T \)
41 \( 1 - T \)
43 \( 1 + T \)
47 \( 1 + T \)
53 \( 1 + T \)
59 \( 1 + T \)
61 \( 1 + T \)
67 \( 1 - T \)
71 \( 1 - T \)
73 \( 1 + T \)
79 \( 1 - T \)
83 \( 1 - T \)
89 \( 1 - T \)
97 \( 1 - T \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−21.81655984368735001539255061277, −21.14065995776623039864209374378, −20.50588849301516776331442793630, −20.01935942054174052321748001000, −18.789784711096090649778393067303, −18.007279630893144433213681429130, −17.07197336332142024417404559984, −16.054708029800516933480138399694, −15.00029762637685695135844967730, −14.72039995733025617742107770638, −13.76288534992923670815284904673, −13.26198502570475074801626346297, −12.54593044528026151435677242251, −11.309800336000100378995928782539, −10.517926278511949078443576449094, −9.61664385078484306504865863881, −8.64013664794952330134158571025, −7.48045698722959667140575098868, −7.08208814128991682118894751367, −5.55245518670407891084565833525, −5.0395226911881876502251449075, −4.08338533492799588282148203643, −2.716288983938340633423786560291, −2.32646727608209715706610025730, −1.33434166339943289377494614627, 1.33434166339943289377494614627, 2.32646727608209715706610025730, 2.716288983938340633423786560291, 4.08338533492799588282148203643, 5.0395226911881876502251449075, 5.55245518670407891084565833525, 7.08208814128991682118894751367, 7.48045698722959667140575098868, 8.64013664794952330134158571025, 9.61664385078484306504865863881, 10.517926278511949078443576449094, 11.309800336000100378995928782539, 12.54593044528026151435677242251, 13.26198502570475074801626346297, 13.76288534992923670815284904673, 14.72039995733025617742107770638, 15.00029762637685695135844967730, 16.054708029800516933480138399694, 17.07197336332142024417404559984, 18.007279630893144433213681429130, 18.789784711096090649778393067303, 20.01935942054174052321748001000, 20.50588849301516776331442793630, 21.14065995776623039864209374378, 21.81655984368735001539255061277

Graph of the $Z$-function along the critical line