L(s) = 1 | + (0.374 − 0.927i)2-s + (−0.719 − 0.694i)4-s + (−0.173 − 0.984i)5-s + (−0.997 − 0.0697i)7-s + (−0.913 + 0.406i)8-s + (−0.978 − 0.207i)10-s + (−0.997 − 0.0697i)11-s + (0.615 − 0.788i)13-s + (−0.438 + 0.898i)14-s + (0.0348 + 0.999i)16-s + (−0.809 − 0.587i)17-s + (0.669 − 0.743i)19-s + (−0.559 + 0.829i)20-s + (−0.438 + 0.898i)22-s + (0.438 − 0.898i)23-s + ⋯ |
L(s) = 1 | + (0.374 − 0.927i)2-s + (−0.719 − 0.694i)4-s + (−0.173 − 0.984i)5-s + (−0.997 − 0.0697i)7-s + (−0.913 + 0.406i)8-s + (−0.978 − 0.207i)10-s + (−0.997 − 0.0697i)11-s + (0.615 − 0.788i)13-s + (−0.438 + 0.898i)14-s + (0.0348 + 0.999i)16-s + (−0.809 − 0.587i)17-s + (0.669 − 0.743i)19-s + (−0.559 + 0.829i)20-s + (−0.438 + 0.898i)22-s + (0.438 − 0.898i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 837 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.182 + 0.983i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 837 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.182 + 0.983i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(-0.2550687574 - 0.2120143332i\) |
\(L(\frac12)\) |
\(\approx\) |
\(-0.2550687574 - 0.2120143332i\) |
\(L(1)\) |
\(\approx\) |
\(0.5168961922 - 0.5772298877i\) |
\(L(1)\) |
\(\approx\) |
\(0.5168961922 - 0.5772298877i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 31 | \( 1 \) |
good | 2 | \( 1 + (0.374 - 0.927i)T \) |
| 5 | \( 1 + (-0.173 - 0.984i)T \) |
| 7 | \( 1 + (-0.997 - 0.0697i)T \) |
| 11 | \( 1 + (-0.997 - 0.0697i)T \) |
| 13 | \( 1 + (0.615 - 0.788i)T \) |
| 17 | \( 1 + (-0.809 - 0.587i)T \) |
| 19 | \( 1 + (0.669 - 0.743i)T \) |
| 23 | \( 1 + (0.438 - 0.898i)T \) |
| 29 | \( 1 + (-0.374 + 0.927i)T \) |
| 37 | \( 1 - T \) |
| 41 | \( 1 + (-0.0348 + 0.999i)T \) |
| 43 | \( 1 + (-0.990 + 0.139i)T \) |
| 47 | \( 1 + (0.882 + 0.469i)T \) |
| 53 | \( 1 + (-0.104 + 0.994i)T \) |
| 59 | \( 1 + (0.374 + 0.927i)T \) |
| 61 | \( 1 + (-0.173 + 0.984i)T \) |
| 67 | \( 1 + (-0.939 - 0.342i)T \) |
| 71 | \( 1 + (-0.913 + 0.406i)T \) |
| 73 | \( 1 + (0.809 - 0.587i)T \) |
| 79 | \( 1 + (-0.961 - 0.275i)T \) |
| 83 | \( 1 + (0.990 - 0.139i)T \) |
| 89 | \( 1 + (-0.104 - 0.994i)T \) |
| 97 | \( 1 + (0.559 - 0.829i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−22.90350803849840160971616448434, −22.16340173670660136927665349697, −21.484635769617383660014479312194, −20.55806348336107596817198973784, −19.15886510473765876481478513862, −18.78161300924681508065425667277, −17.92889535518600049259242299714, −17.07230708252851463465072665486, −16.00589614515711021964252099142, −15.621880109617180061724479890491, −14.88834394712329152240973100244, −13.730931905587712430990582425519, −13.431975082834943309346974494049, −12.36944835011501929044927713181, −11.42526890946932087344921523656, −10.347540861784304001632536554867, −9.52430681163159950515710365008, −8.52467502960649096932754749029, −7.5484044745297687396174218075, −6.826292599875932082359736052136, −6.124548084699227067250757960618, −5.27491408855914287646881464345, −3.8617509148699623123236200847, −3.40518374229947704206864716934, −2.20802862809123357604966001274,
0.14068800547654770895358664573, 1.18805888861956793835895326242, 2.65444555037224591738006091305, 3.28952460389326927819440882842, 4.48271224968218770757159669128, 5.19480830936274992158557915553, 6.05236991512010871112951147856, 7.33351836133782278041707193512, 8.64482503878505297948014135945, 9.10096228585419029656783735452, 10.15002587033494971410200031992, 10.833422911678266593303644021261, 11.83267173887303064791826953728, 12.73400066915096321402451237874, 13.194046149403885781988113616571, 13.73069643104004169959605100642, 15.20179182887787049012945167560, 15.79681953533746485717282553234, 16.58594524322070033216199833228, 17.81745555523834724118801128649, 18.41635488519650996400056620512, 19.36706036030847464428232784924, 20.25983819217316075311100360461, 20.42453895929265022000403562186, 21.42782989783892286404102599585