L(s) = 1 | + (0.961 + 0.275i)2-s + (0.848 + 0.529i)4-s + (−0.939 − 0.342i)5-s + (0.990 − 0.139i)7-s + (0.669 + 0.743i)8-s + (−0.809 − 0.587i)10-s + (0.374 − 0.927i)11-s + (0.241 − 0.970i)13-s + (0.990 + 0.139i)14-s + (0.438 + 0.898i)16-s + (−0.669 − 0.743i)17-s + (−0.809 − 0.587i)19-s + (−0.615 − 0.788i)20-s + (0.615 − 0.788i)22-s + (0.374 + 0.927i)23-s + ⋯ |
L(s) = 1 | + (0.961 + 0.275i)2-s + (0.848 + 0.529i)4-s + (−0.939 − 0.342i)5-s + (0.990 − 0.139i)7-s + (0.669 + 0.743i)8-s + (−0.809 − 0.587i)10-s + (0.374 − 0.927i)11-s + (0.241 − 0.970i)13-s + (0.990 + 0.139i)14-s + (0.438 + 0.898i)16-s + (−0.669 − 0.743i)17-s + (−0.809 − 0.587i)19-s + (−0.615 − 0.788i)20-s + (0.615 − 0.788i)22-s + (0.374 + 0.927i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 837 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.0956 - 0.995i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 837 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.0956 - 0.995i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.830443631 - 2.014714295i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.830443631 - 2.014714295i\) |
\(L(1)\) |
\(\approx\) |
\(1.671857792 - 0.1725804171i\) |
\(L(1)\) |
\(\approx\) |
\(1.671857792 - 0.1725804171i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 31 | \( 1 \) |
good | 2 | \( 1 + (0.961 + 0.275i)T \) |
| 5 | \( 1 + (-0.939 - 0.342i)T \) |
| 7 | \( 1 + (0.990 - 0.139i)T \) |
| 11 | \( 1 + (0.374 - 0.927i)T \) |
| 13 | \( 1 + (0.241 - 0.970i)T \) |
| 17 | \( 1 + (-0.669 - 0.743i)T \) |
| 19 | \( 1 + (-0.809 - 0.587i)T \) |
| 23 | \( 1 + (0.374 + 0.927i)T \) |
| 29 | \( 1 + (-0.961 - 0.275i)T \) |
| 37 | \( 1 + (0.5 - 0.866i)T \) |
| 41 | \( 1 + (-0.997 + 0.0697i)T \) |
| 43 | \( 1 + (-0.961 - 0.275i)T \) |
| 47 | \( 1 + (-0.997 - 0.0697i)T \) |
| 53 | \( 1 + (-0.669 - 0.743i)T \) |
| 59 | \( 1 + (-0.241 + 0.970i)T \) |
| 61 | \( 1 + (-0.766 - 0.642i)T \) |
| 67 | \( 1 + (0.766 - 0.642i)T \) |
| 71 | \( 1 + (0.309 - 0.951i)T \) |
| 73 | \( 1 + (-0.669 + 0.743i)T \) |
| 79 | \( 1 + (-0.848 + 0.529i)T \) |
| 83 | \( 1 + (0.719 - 0.694i)T \) |
| 89 | \( 1 + (0.978 + 0.207i)T \) |
| 97 | \( 1 + (0.990 - 0.139i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−22.133519772844306273059663855861, −21.478131833323286677165620120521, −20.49784896774928593725424582775, −20.08332505313070105658048081766, −18.99963560971374240458645499351, −18.509329972898180950824235240, −17.18244978013435405486139424918, −16.412017394607274760905393702683, −15.274777656431290337503199893708, −14.84628012802708549393569945490, −14.32579543998734331225786819799, −13.120258845188766648508350004523, −12.31348434942278114166081779756, −11.57837085326345308541999732089, −11.02286654320546255318054916309, −10.16312472767081635765845994166, −8.79486742450198971395050436686, −7.88358365314610860783899509888, −6.88813779001332083903422759456, −6.278080998829326915286974823647, −4.773243201752678298423953927309, −4.39567825923418843058066056962, −3.51621878292273308910918855896, −2.17860265635840668165894199941, −1.48389076913205661323608831801,
0.38987054103633722361188388733, 1.7176652757111538319884172775, 3.074657075198399812795126452764, 3.8431631896158839799434554007, 4.78413778926315318839559017924, 5.42304063176687675362876411940, 6.58622364248297704826904519269, 7.561897109103773881048621008037, 8.182997545119973765284767364, 8.999344250150024177797527667541, 10.76236732710009270228778049324, 11.309032619069332497038118319922, 11.82139364978378593140809156852, 13.01472539502710656326901456319, 13.49806489718227168546576308822, 14.59403040190476036182630772394, 15.22576941372237654145781035411, 15.86322620150880671843182814292, 16.7898919120108181878481048655, 17.464723419385546428297497636158, 18.57485907970807855357052791484, 19.74856240021290389544496993990, 20.15723046180034586627640349355, 21.07146496291568151215304785155, 21.72247642873719356695866450779