L(s) = 1 | + (0.848 − 0.529i)2-s + (0.438 − 0.898i)4-s + (0.766 − 0.642i)5-s + (0.961 + 0.275i)7-s + (−0.104 − 0.994i)8-s + (0.309 − 0.951i)10-s + (0.719 − 0.694i)11-s + (0.882 − 0.469i)13-s + (0.961 − 0.275i)14-s + (−0.615 − 0.788i)16-s + (0.104 + 0.994i)17-s + (0.309 − 0.951i)19-s + (−0.241 − 0.970i)20-s + (0.241 − 0.970i)22-s + (0.719 + 0.694i)23-s + ⋯ |
L(s) = 1 | + (0.848 − 0.529i)2-s + (0.438 − 0.898i)4-s + (0.766 − 0.642i)5-s + (0.961 + 0.275i)7-s + (−0.104 − 0.994i)8-s + (0.309 − 0.951i)10-s + (0.719 − 0.694i)11-s + (0.882 − 0.469i)13-s + (0.961 − 0.275i)14-s + (−0.615 − 0.788i)16-s + (0.104 + 0.994i)17-s + (0.309 − 0.951i)19-s + (−0.241 − 0.970i)20-s + (0.241 − 0.970i)22-s + (0.719 + 0.694i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 837 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.221 - 0.975i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 837 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.221 - 0.975i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(3.582428970 - 4.487660616i\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.582428970 - 4.487660616i\) |
\(L(1)\) |
\(\approx\) |
\(2.107088077 - 1.290125669i\) |
\(L(1)\) |
\(\approx\) |
\(2.107088077 - 1.290125669i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 31 | \( 1 \) |
good | 2 | \( 1 + (0.848 - 0.529i)T \) |
| 5 | \( 1 + (0.766 - 0.642i)T \) |
| 7 | \( 1 + (0.961 + 0.275i)T \) |
| 11 | \( 1 + (0.719 - 0.694i)T \) |
| 13 | \( 1 + (0.882 - 0.469i)T \) |
| 17 | \( 1 + (0.104 + 0.994i)T \) |
| 19 | \( 1 + (0.309 - 0.951i)T \) |
| 23 | \( 1 + (0.719 + 0.694i)T \) |
| 29 | \( 1 + (-0.848 + 0.529i)T \) |
| 37 | \( 1 + (0.5 - 0.866i)T \) |
| 41 | \( 1 + (0.990 + 0.139i)T \) |
| 43 | \( 1 + (-0.848 + 0.529i)T \) |
| 47 | \( 1 + (0.990 - 0.139i)T \) |
| 53 | \( 1 + (0.104 + 0.994i)T \) |
| 59 | \( 1 + (-0.882 + 0.469i)T \) |
| 61 | \( 1 + (-0.173 + 0.984i)T \) |
| 67 | \( 1 + (0.173 + 0.984i)T \) |
| 71 | \( 1 + (-0.809 + 0.587i)T \) |
| 73 | \( 1 + (0.104 - 0.994i)T \) |
| 79 | \( 1 + (-0.438 - 0.898i)T \) |
| 83 | \( 1 + (-0.0348 - 0.999i)T \) |
| 89 | \( 1 + (-0.913 + 0.406i)T \) |
| 97 | \( 1 + (0.961 + 0.275i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−22.41447047370007348006360678721, −21.36293735826341226804718980456, −20.78603388640582876572352190479, −20.25572777215058492052532613430, −18.65204760304266540227848058316, −18.12793477285410159734085644418, −17.12479889877451349778491372617, −16.70510037398095540334627297083, −15.489608491972661559731303478403, −14.70050204361182813188999669568, −14.12581039147222640645172410633, −13.60116961628613571244508470582, −12.527757659446403895688106163105, −11.52953081908173458276741697074, −11.01613920585285664071856103955, −9.81488082498553492657092308649, −8.822337454661407781725968828924, −7.7341890333353349831689689135, −6.97024980487483309648346125475, −6.21603094181547256268937145870, −5.285750754100404677564311554900, −4.39538915385338255154065455463, −3.481750923343155733015982643930, −2.30034670174345678064814417684, −1.41988431585571486504685048061,
1.02091111321202800919710442856, 1.5014576079320968875214180099, 2.68978054428660367821556997805, 3.80358929218635092823748654350, 4.71516918199460357825412341017, 5.688929480477164210487842385263, 6.041482822670778708665420639044, 7.43028493755937960865099452055, 8.76362455431535044418290592187, 9.21265217721694540910859015740, 10.54174578402395305090148739162, 11.13554374003728955201456055361, 11.922466771822140908457137241303, 12.9732723675557124315272689899, 13.43964609466756876174049825809, 14.326424418558028418342319035255, 15.01096339213707738510681309058, 15.947408772650587509026372873284, 16.92417919818371638409459755630, 17.75936111668548861359805320104, 18.578310463307175937047165963619, 19.62354717837963720952935781256, 20.2851889191781526625336052956, 21.15714795357957935768354250461, 21.57132949951117514429491398607