L(s) = 1 | + (0.615 + 0.788i)2-s + (−0.241 + 0.970i)4-s + (−0.766 + 0.642i)5-s + (0.559 − 0.829i)7-s + (−0.913 + 0.406i)8-s + (−0.978 − 0.207i)10-s + (0.559 − 0.829i)11-s + (−0.990 − 0.139i)13-s + (0.997 − 0.0697i)14-s + (−0.882 − 0.469i)16-s + (−0.809 − 0.587i)17-s + (0.669 − 0.743i)19-s + (−0.438 − 0.898i)20-s + (0.997 − 0.0697i)22-s + (−0.997 + 0.0697i)23-s + ⋯ |
L(s) = 1 | + (0.615 + 0.788i)2-s + (−0.241 + 0.970i)4-s + (−0.766 + 0.642i)5-s + (0.559 − 0.829i)7-s + (−0.913 + 0.406i)8-s + (−0.978 − 0.207i)10-s + (0.559 − 0.829i)11-s + (−0.990 − 0.139i)13-s + (0.997 − 0.0697i)14-s + (−0.882 − 0.469i)16-s + (−0.809 − 0.587i)17-s + (0.669 − 0.743i)19-s + (−0.438 − 0.898i)20-s + (0.997 − 0.0697i)22-s + (−0.997 + 0.0697i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 837 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.760 - 0.649i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 837 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.760 - 0.649i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9224198403 - 0.3406001747i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9224198403 - 0.3406001747i\) |
\(L(1)\) |
\(\approx\) |
\(1.011187493 + 0.2933008705i\) |
\(L(1)\) |
\(\approx\) |
\(1.011187493 + 0.2933008705i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 31 | \( 1 \) |
good | 2 | \( 1 + (0.615 + 0.788i)T \) |
| 5 | \( 1 + (-0.766 + 0.642i)T \) |
| 7 | \( 1 + (0.559 - 0.829i)T \) |
| 11 | \( 1 + (0.559 - 0.829i)T \) |
| 13 | \( 1 + (-0.990 - 0.139i)T \) |
| 17 | \( 1 + (-0.809 - 0.587i)T \) |
| 19 | \( 1 + (0.669 - 0.743i)T \) |
| 23 | \( 1 + (-0.997 + 0.0697i)T \) |
| 29 | \( 1 + (-0.615 - 0.788i)T \) |
| 37 | \( 1 - T \) |
| 41 | \( 1 + (0.882 - 0.469i)T \) |
| 43 | \( 1 + (0.374 - 0.927i)T \) |
| 47 | \( 1 + (-0.848 + 0.529i)T \) |
| 53 | \( 1 + (-0.104 + 0.994i)T \) |
| 59 | \( 1 + (0.615 - 0.788i)T \) |
| 61 | \( 1 + (-0.766 - 0.642i)T \) |
| 67 | \( 1 + (0.173 + 0.984i)T \) |
| 71 | \( 1 + (-0.913 + 0.406i)T \) |
| 73 | \( 1 + (0.809 - 0.587i)T \) |
| 79 | \( 1 + (0.719 - 0.694i)T \) |
| 83 | \( 1 + (-0.374 + 0.927i)T \) |
| 89 | \( 1 + (-0.104 - 0.994i)T \) |
| 97 | \( 1 + (0.438 + 0.898i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−22.34357793282789025449554967184, −21.36421346180487568668587092708, −20.664657045719607769242817247066, −19.75962169726337314653873871825, −19.517179399587555085603611723809, −18.3155118632887488465201815455, −17.68472909025539024798292465314, −16.495411463404542999030765616344, −15.53099539658418929106286034952, −14.830313057212476777702142246309, −14.287407155039030915265541378485, −12.97953046173089669592613182680, −12.28112838947853768430621945610, −11.88507366223960128371254244529, −11.069469193779026440919509134865, −9.88784668207980932675622176842, −9.171735892008146074411901550, −8.274656696310510420518259469250, −7.19989036957832197046833535299, −5.96737405797225730981484216237, −4.999907692887872975210491090748, −4.41620703346896721197972883130, −3.49047896695202135872418879548, −2.171980488509361758302903979374, −1.48144909264638781516810792340,
0.35276743426179951377670336357, 2.39287698117495177026419257811, 3.46039465062582349614078430767, 4.203077922467496966735561448427, 5.02006121943717096158748489501, 6.191881727356887301524361790051, 7.14851451365750254212180418502, 7.55984698853656430431511498368, 8.481396405537518655485595481860, 9.54634847151922161146539836158, 10.86532807919579950754637450167, 11.53530356625546012935003006534, 12.21833513825954793259908697603, 13.5135177737681765712610225908, 14.05024438257224283223325983979, 14.70380032268907445461755480040, 15.62974964868704961397418963125, 16.203455346340871455178615567796, 17.271173531400235631389422329395, 17.724332589119805072020939737332, 18.81735049412696770857539691105, 19.787595373279817543838167085930, 20.43649721027941113134761025479, 21.556734740021962054759578586724, 22.397913003879470508051878051119