L(s) = 1 | + (−0.990 − 0.139i)2-s + (0.961 + 0.275i)4-s + (0.939 − 0.342i)5-s + (0.438 − 0.898i)7-s + (−0.913 − 0.406i)8-s + (−0.978 + 0.207i)10-s + (0.438 − 0.898i)11-s + (0.374 − 0.927i)13-s + (−0.559 + 0.829i)14-s + (0.848 + 0.529i)16-s + (−0.809 + 0.587i)17-s + (0.669 + 0.743i)19-s + (0.997 − 0.0697i)20-s + (−0.559 + 0.829i)22-s + (0.559 − 0.829i)23-s + ⋯ |
L(s) = 1 | + (−0.990 − 0.139i)2-s + (0.961 + 0.275i)4-s + (0.939 − 0.342i)5-s + (0.438 − 0.898i)7-s + (−0.913 − 0.406i)8-s + (−0.978 + 0.207i)10-s + (0.438 − 0.898i)11-s + (0.374 − 0.927i)13-s + (−0.559 + 0.829i)14-s + (0.848 + 0.529i)16-s + (−0.809 + 0.587i)17-s + (0.669 + 0.743i)19-s + (0.997 − 0.0697i)20-s + (−0.559 + 0.829i)22-s + (0.559 − 0.829i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 837 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.182 - 0.983i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 837 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.182 - 0.983i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9562684498 - 0.7948547671i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9562684498 - 0.7948547671i\) |
\(L(1)\) |
\(\approx\) |
\(0.8753129212 - 0.3069987741i\) |
\(L(1)\) |
\(\approx\) |
\(0.8753129212 - 0.3069987741i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 31 | \( 1 \) |
good | 2 | \( 1 + (-0.990 - 0.139i)T \) |
| 5 | \( 1 + (0.939 - 0.342i)T \) |
| 7 | \( 1 + (0.438 - 0.898i)T \) |
| 11 | \( 1 + (0.438 - 0.898i)T \) |
| 13 | \( 1 + (0.374 - 0.927i)T \) |
| 17 | \( 1 + (-0.809 + 0.587i)T \) |
| 19 | \( 1 + (0.669 + 0.743i)T \) |
| 23 | \( 1 + (0.559 - 0.829i)T \) |
| 29 | \( 1 + (0.990 + 0.139i)T \) |
| 37 | \( 1 - T \) |
| 41 | \( 1 + (-0.848 + 0.529i)T \) |
| 43 | \( 1 + (0.615 - 0.788i)T \) |
| 47 | \( 1 + (-0.0348 + 0.999i)T \) |
| 53 | \( 1 + (-0.104 - 0.994i)T \) |
| 59 | \( 1 + (-0.990 + 0.139i)T \) |
| 61 | \( 1 + (0.939 + 0.342i)T \) |
| 67 | \( 1 + (0.766 + 0.642i)T \) |
| 71 | \( 1 + (-0.913 - 0.406i)T \) |
| 73 | \( 1 + (0.809 + 0.587i)T \) |
| 79 | \( 1 + (0.241 - 0.970i)T \) |
| 83 | \( 1 + (-0.615 + 0.788i)T \) |
| 89 | \( 1 + (-0.104 + 0.994i)T \) |
| 97 | \( 1 + (-0.997 + 0.0697i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−22.067328961668636937257557307350, −21.42759054594269048358518442000, −20.697036756434270552752357834, −19.826007474421930366666176835481, −18.9009852393094151957462941068, −18.19029805442636667868506872432, −17.63031201010024556432333731594, −17.05050982477535874511953525283, −15.81084101199558144819772657754, −15.318383131648769958076159887505, −14.34504392352959343153021631498, −13.5954005684290653452210184680, −12.25476693462907634021729932053, −11.53117371121377819000543433154, −10.80292600691802113278174259236, −9.61228915393273121723260924026, −9.2665599243935902686090934860, −8.48451483778674373892207604173, −7.10638586982735684359555813827, −6.70332263415044914521679325268, −5.63146687688525791647853736524, −4.75296885835559894866063154968, −3.001542781290811018166175611763, −2.10944143507339992724099999544, −1.43066071926734096758014956450,
0.8516980844935544595593234722, 1.54075132645476784640603851336, 2.79683646756046367675623869865, 3.825975179892459900312419947964, 5.21191307780567413205283481217, 6.205578386047945298725615301415, 6.91318815718268628214288649456, 8.19658071018400912145105004824, 8.57640888284079767417860807261, 9.64292672349004975827495991903, 10.53668877631365548591060212795, 10.87980047150865750369554070317, 12.06654324401430524814863708037, 13.02117772678926334586962888230, 13.84191609620089985960414869358, 14.685935476160028706693513295661, 15.87763991512111944013124232069, 16.57977658280747061639478844535, 17.35042099502232771082513739597, 17.76301544239017187234551387245, 18.68122125956464557653214085259, 19.60255865356353033125494611797, 20.452207481999486978881791256579, 20.83284529911156563768700850159, 21.74844776806792936109261461189