L(s) = 1 | + (−0.438 − 0.898i)2-s + (−0.615 + 0.788i)4-s + (−0.766 + 0.642i)5-s + (0.0348 + 0.999i)7-s + (0.978 + 0.207i)8-s + (0.913 + 0.406i)10-s + (0.848 − 0.529i)11-s + (−0.438 + 0.898i)13-s + (0.882 − 0.469i)14-s + (−0.241 − 0.970i)16-s + (0.669 − 0.743i)17-s + (−0.104 − 0.994i)19-s + (−0.0348 − 0.999i)20-s + (−0.848 − 0.529i)22-s + (0.0348 − 0.999i)23-s + ⋯ |
L(s) = 1 | + (−0.438 − 0.898i)2-s + (−0.615 + 0.788i)4-s + (−0.766 + 0.642i)5-s + (0.0348 + 0.999i)7-s + (0.978 + 0.207i)8-s + (0.913 + 0.406i)10-s + (0.848 − 0.529i)11-s + (−0.438 + 0.898i)13-s + (0.882 − 0.469i)14-s + (−0.241 − 0.970i)16-s + (0.669 − 0.743i)17-s + (−0.104 − 0.994i)19-s + (−0.0348 − 0.999i)20-s + (−0.848 − 0.529i)22-s + (0.0348 − 0.999i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 837 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.949 + 0.314i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 837 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.949 + 0.314i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9016441275 + 0.1455861287i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9016441275 + 0.1455861287i\) |
\(L(1)\) |
\(\approx\) |
\(0.7649637654 - 0.08037404473i\) |
\(L(1)\) |
\(\approx\) |
\(0.7649637654 - 0.08037404473i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 31 | \( 1 \) |
good | 2 | \( 1 + (-0.438 - 0.898i)T \) |
| 5 | \( 1 + (-0.766 + 0.642i)T \) |
| 7 | \( 1 + (0.0348 + 0.999i)T \) |
| 11 | \( 1 + (0.848 - 0.529i)T \) |
| 13 | \( 1 + (-0.438 + 0.898i)T \) |
| 17 | \( 1 + (0.669 - 0.743i)T \) |
| 19 | \( 1 + (-0.104 - 0.994i)T \) |
| 23 | \( 1 + (0.0348 - 0.999i)T \) |
| 29 | \( 1 + (0.438 + 0.898i)T \) |
| 37 | \( 1 + (0.5 + 0.866i)T \) |
| 41 | \( 1 + (0.719 + 0.694i)T \) |
| 43 | \( 1 + (0.997 + 0.0697i)T \) |
| 47 | \( 1 + (-0.961 - 0.275i)T \) |
| 53 | \( 1 + (0.309 + 0.951i)T \) |
| 59 | \( 1 + (0.997 - 0.0697i)T \) |
| 61 | \( 1 + (0.939 - 0.342i)T \) |
| 67 | \( 1 + (0.173 + 0.984i)T \) |
| 71 | \( 1 + (-0.669 + 0.743i)T \) |
| 73 | \( 1 + (-0.669 - 0.743i)T \) |
| 79 | \( 1 + (-0.990 + 0.139i)T \) |
| 83 | \( 1 + (0.438 + 0.898i)T \) |
| 89 | \( 1 + (0.669 + 0.743i)T \) |
| 97 | \( 1 + (0.848 - 0.529i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−22.66872006136162187922834930437, −21.16921706391962108587096431419, −20.24506064587982580196934948072, −19.51892674959426152187657230857, −19.148662694354842551370465362663, −17.62091807135404860081419499362, −17.34870825608699848201352749361, −16.49295219691261387199884794741, −15.84712921717140638045913569390, −14.83076860876515630450811559005, −14.378708749867153372909462340759, −13.20417920078906581572112359992, −12.494071317975676005980911122248, −11.418000322215738748028937685634, −10.2954026226893635200994670804, −9.71870164144129364977916051178, −8.65418364357212400739417806220, −7.681081322050493582366821146389, −7.480155873470913368698792086288, −6.20488137736554156664914630111, −5.28949962543467609468789751886, −4.225474517363018958749989978804, −3.69849091191351541358355779493, −1.59286572552813147250364857289, −0.65372463392287463282506156923,
0.99717948114506112182218448441, 2.45968465993322004044040492160, 2.99159507940589791651640512596, 4.11177328224109989306278548026, 4.9545833702924774310365406949, 6.44090736562111926075731072234, 7.25649937870170038734523402223, 8.35990827063679552189822578826, 8.99740907550946142235753935667, 9.80048634065508225549402632986, 10.92199923925779633148094793693, 11.65858245178432917829049134090, 11.98263595546913082589571813037, 12.987464931870528651035771944242, 14.25967917058612347587758744225, 14.65348363544016275780188701173, 15.98769988595825755776012092942, 16.541503936035824798437223949456, 17.67544380414076720827675787670, 18.47695640118111432472859711118, 19.05331012611027609819150442329, 19.565276515565816812860753959868, 20.4750719451385717388443565989, 21.550765421989119619870599707608, 21.99768354757688547028490624088