L(s) = 1 | + (−0.0348 − 0.999i)2-s + (−0.997 + 0.0697i)4-s + (0.939 + 0.342i)5-s + (−0.719 + 0.694i)7-s + (0.104 + 0.994i)8-s + (0.309 − 0.951i)10-s + (−0.241 − 0.970i)11-s + (−0.848 − 0.529i)13-s + (0.719 + 0.694i)14-s + (0.990 − 0.139i)16-s + (−0.104 − 0.994i)17-s + (0.309 − 0.951i)19-s + (−0.961 − 0.275i)20-s + (−0.961 + 0.275i)22-s + (−0.241 + 0.970i)23-s + ⋯ |
L(s) = 1 | + (−0.0348 − 0.999i)2-s + (−0.997 + 0.0697i)4-s + (0.939 + 0.342i)5-s + (−0.719 + 0.694i)7-s + (0.104 + 0.994i)8-s + (0.309 − 0.951i)10-s + (−0.241 − 0.970i)11-s + (−0.848 − 0.529i)13-s + (0.719 + 0.694i)14-s + (0.990 − 0.139i)16-s + (−0.104 − 0.994i)17-s + (0.309 − 0.951i)19-s + (−0.961 − 0.275i)20-s + (−0.961 + 0.275i)22-s + (−0.241 + 0.970i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 837 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.679 - 0.733i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 837 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.679 - 0.733i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.4163211214 - 0.9529296810i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4163211214 - 0.9529296810i\) |
\(L(1)\) |
\(\approx\) |
\(0.7897809768 - 0.4845721879i\) |
\(L(1)\) |
\(\approx\) |
\(0.7897809768 - 0.4845721879i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 31 | \( 1 \) |
good | 2 | \( 1 + (-0.0348 - 0.999i)T \) |
| 5 | \( 1 + (0.939 + 0.342i)T \) |
| 7 | \( 1 + (-0.719 + 0.694i)T \) |
| 11 | \( 1 + (-0.241 - 0.970i)T \) |
| 13 | \( 1 + (-0.848 - 0.529i)T \) |
| 17 | \( 1 + (-0.104 - 0.994i)T \) |
| 19 | \( 1 + (0.309 - 0.951i)T \) |
| 23 | \( 1 + (-0.241 + 0.970i)T \) |
| 29 | \( 1 + (0.0348 + 0.999i)T \) |
| 37 | \( 1 + (0.5 - 0.866i)T \) |
| 41 | \( 1 + (0.374 + 0.927i)T \) |
| 43 | \( 1 + (-0.0348 - 0.999i)T \) |
| 47 | \( 1 + (0.374 - 0.927i)T \) |
| 53 | \( 1 + (-0.104 - 0.994i)T \) |
| 59 | \( 1 + (-0.848 - 0.529i)T \) |
| 61 | \( 1 + (-0.766 - 0.642i)T \) |
| 67 | \( 1 + (0.766 - 0.642i)T \) |
| 71 | \( 1 + (0.809 - 0.587i)T \) |
| 73 | \( 1 + (0.104 - 0.994i)T \) |
| 79 | \( 1 + (0.997 + 0.0697i)T \) |
| 83 | \( 1 + (-0.882 - 0.469i)T \) |
| 89 | \( 1 + (0.913 - 0.406i)T \) |
| 97 | \( 1 + (-0.719 + 0.694i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−22.57759882948082928326353540637, −21.865537778459016743031769594625, −20.916178737267121738642261518452, −20.031244285865901960400676523414, −19.077633053528107670620571822219, −18.25009108225534860454041547202, −17.24935691745606447573476981432, −16.97831665066218903671595756717, −16.18335983520199954294189803430, −15.17710699667989411692467344502, −14.34004656277551724816936875076, −13.72928936591206916703773537511, −12.75053638622106647644904762559, −12.37821973463979951850141838189, −10.48837400276303869587669394003, −9.87449771965351815908532957825, −9.36232047996588253620353482417, −8.19174510125148409588128833761, −7.34090896438878092855994461073, −6.44614942250412583767273564984, −5.84736238147980434303956719071, −4.65374460100293455425334374559, −4.0827454184279478148019357928, −2.5232119610730204972071943458, −1.23370250330999639224870129812,
0.50802470035214033775748509744, 2.018567535042187108289296975765, 2.8434995754990048055254359305, 3.37283777022285395278326719926, 5.08627060067622341541232314279, 5.48772697916983903166194577785, 6.64474137867284403362064086769, 7.83965281971325246424785757279, 9.21207069565556809877406011988, 9.334569574698574403815908435311, 10.36847863419155930818344504903, 11.15077016390951885183685589659, 12.03305521480742298430232395017, 12.944618586209738414263040461315, 13.54795501252880351463229040161, 14.267446383814064002066432451, 15.31224779730068342738284421267, 16.34382746879893041500933056581, 17.31814048233234812055151901216, 18.14671796749257825622417912314, 18.578017463940200778604329650819, 19.58189513208074394388768461588, 20.11548880275294377751415682278, 21.325993045815920991878446669330, 21.77713971771528408423179517380