Properties

Label 1-837-837.196-r0-0-0
Degree $1$
Conductor $837$
Sign $-0.773 + 0.634i$
Analytic cond. $3.88701$
Root an. cond. $3.88701$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.848 + 0.529i)2-s + (0.438 + 0.898i)4-s + (0.173 − 0.984i)5-s + (−0.241 + 0.970i)7-s + (−0.104 + 0.994i)8-s + (0.669 − 0.743i)10-s + (−0.241 + 0.970i)11-s + (0.0348 + 0.999i)13-s + (−0.719 + 0.694i)14-s + (−0.615 + 0.788i)16-s + (−0.809 − 0.587i)17-s + (−0.978 − 0.207i)19-s + (0.961 − 0.275i)20-s + (−0.719 + 0.694i)22-s + (−0.719 + 0.694i)23-s + ⋯
L(s)  = 1  + (0.848 + 0.529i)2-s + (0.438 + 0.898i)4-s + (0.173 − 0.984i)5-s + (−0.241 + 0.970i)7-s + (−0.104 + 0.994i)8-s + (0.669 − 0.743i)10-s + (−0.241 + 0.970i)11-s + (0.0348 + 0.999i)13-s + (−0.719 + 0.694i)14-s + (−0.615 + 0.788i)16-s + (−0.809 − 0.587i)17-s + (−0.978 − 0.207i)19-s + (0.961 − 0.275i)20-s + (−0.719 + 0.694i)22-s + (−0.719 + 0.694i)23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 837 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.773 + 0.634i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 837 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.773 + 0.634i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(1\)
Conductor: \(837\)    =    \(3^{3} \cdot 31\)
Sign: $-0.773 + 0.634i$
Analytic conductor: \(3.88701\)
Root analytic conductor: \(3.88701\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{837} (196, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((1,\ 837,\ (0:\ ),\ -0.773 + 0.634i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.6001667274 + 1.677388579i\)
\(L(\frac12)\) \(\approx\) \(0.6001667274 + 1.677388579i\)
\(L(1)\) \(\approx\) \(1.247072817 + 0.7661850322i\)
\(L(1)\) \(\approx\) \(1.247072817 + 0.7661850322i\)

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
31 \( 1 \)
good2 \( 1 + (0.848 + 0.529i)T \)
5 \( 1 + (0.173 - 0.984i)T \)
7 \( 1 + (-0.241 + 0.970i)T \)
11 \( 1 + (-0.241 + 0.970i)T \)
13 \( 1 + (0.0348 + 0.999i)T \)
17 \( 1 + (-0.809 - 0.587i)T \)
19 \( 1 + (-0.978 - 0.207i)T \)
23 \( 1 + (-0.719 + 0.694i)T \)
29 \( 1 + (0.848 + 0.529i)T \)
37 \( 1 + T \)
41 \( 1 + (-0.615 - 0.788i)T \)
43 \( 1 + (-0.882 + 0.469i)T \)
47 \( 1 + (0.990 + 0.139i)T \)
53 \( 1 + (0.913 - 0.406i)T \)
59 \( 1 + (0.848 - 0.529i)T \)
61 \( 1 + (0.173 + 0.984i)T \)
67 \( 1 + (-0.939 + 0.342i)T \)
71 \( 1 + (-0.104 + 0.994i)T \)
73 \( 1 + (-0.809 + 0.587i)T \)
79 \( 1 + (0.559 + 0.829i)T \)
83 \( 1 + (-0.882 + 0.469i)T \)
89 \( 1 + (0.913 + 0.406i)T \)
97 \( 1 + (0.961 - 0.275i)T \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−21.89821697839199153252710300496, −21.22321896187654971661161237833, −20.191199335039096634870518888348, −19.63802938720948711150504558595, −18.823153383995687177241642855844, −18.02696847915124881892666903289, −16.99343518465951651757869635781, −15.99389160354120919373683669121, −15.11827995120549839399387800149, −14.487759195634143014520470206980, −13.45815342103925039056492038692, −13.26859514774516840842416000194, −12.03925904530564124696576108413, −11.013846222014406242019536007833, −10.48279842603822427484242683680, −10.05368008249223980644553349522, −8.50747061078119401078089578037, −7.45077334521817225100747208523, −6.30504718185914594029944706770, −6.07352082089259945634959864495, −4.61752174819934901091167269334, −3.74430790486437522706828393414, −2.98486974145074391005085230700, −2.05702059102582819164349660462, −0.548001872907781873257100796929, 1.8854426693722530173403881582, 2.52761225999145088578062904798, 4.05312067249090631947316792534, 4.69581496851385594732272303025, 5.49603237463456393225077276086, 6.41613670664378991343017897101, 7.23432964419856704492987449809, 8.46479448857265335527642808624, 8.956656094036934032896171326, 9.969728360028054698070394319245, 11.50608299612870533823259104337, 12.027970784667909950616306220047, 12.828622674139945291185964628343, 13.41755596732662503720231974387, 14.402906838323790218435588741855, 15.33411257134107283433380010968, 15.884053775264192107316154647424, 16.619774210832160625726421522660, 17.52457098253103506637569020, 18.19910367146226365181163350252, 19.51414080920151272589542182109, 20.24220174669480914468227061961, 21.1156106141514468342844488000, 21.68251274223208795024175797285, 22.36698550883591476739177612017

Graph of the $Z$-function along the critical line