L(s) = 1 | + (0.0348 + 0.999i)2-s + (−0.997 + 0.0697i)4-s + (0.766 − 0.642i)5-s + (0.961 + 0.275i)7-s + (−0.104 − 0.994i)8-s + (0.669 + 0.743i)10-s + (0.961 + 0.275i)11-s + (−0.882 + 0.469i)13-s + (−0.241 + 0.970i)14-s + (0.990 − 0.139i)16-s + (−0.809 + 0.587i)17-s + (−0.978 + 0.207i)19-s + (−0.719 + 0.694i)20-s + (−0.241 + 0.970i)22-s + (−0.241 + 0.970i)23-s + ⋯ |
L(s) = 1 | + (0.0348 + 0.999i)2-s + (−0.997 + 0.0697i)4-s + (0.766 − 0.642i)5-s + (0.961 + 0.275i)7-s + (−0.104 − 0.994i)8-s + (0.669 + 0.743i)10-s + (0.961 + 0.275i)11-s + (−0.882 + 0.469i)13-s + (−0.241 + 0.970i)14-s + (0.990 − 0.139i)16-s + (−0.809 + 0.587i)17-s + (−0.978 + 0.207i)19-s + (−0.719 + 0.694i)20-s + (−0.241 + 0.970i)22-s + (−0.241 + 0.970i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 837 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.162 + 0.986i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 837 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.162 + 0.986i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.052681771 + 1.240714278i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.052681771 + 1.240714278i\) |
\(L(1)\) |
\(\approx\) |
\(1.044102493 + 0.6113492401i\) |
\(L(1)\) |
\(\approx\) |
\(1.044102493 + 0.6113492401i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 31 | \( 1 \) |
good | 2 | \( 1 + (0.0348 + 0.999i)T \) |
| 5 | \( 1 + (0.766 - 0.642i)T \) |
| 7 | \( 1 + (0.961 + 0.275i)T \) |
| 11 | \( 1 + (0.961 + 0.275i)T \) |
| 13 | \( 1 + (-0.882 + 0.469i)T \) |
| 17 | \( 1 + (-0.809 + 0.587i)T \) |
| 19 | \( 1 + (-0.978 + 0.207i)T \) |
| 23 | \( 1 + (-0.241 + 0.970i)T \) |
| 29 | \( 1 + (0.0348 + 0.999i)T \) |
| 37 | \( 1 + T \) |
| 41 | \( 1 + (0.990 + 0.139i)T \) |
| 43 | \( 1 + (0.848 - 0.529i)T \) |
| 47 | \( 1 + (-0.374 + 0.927i)T \) |
| 53 | \( 1 + (0.913 + 0.406i)T \) |
| 59 | \( 1 + (0.0348 - 0.999i)T \) |
| 61 | \( 1 + (0.766 + 0.642i)T \) |
| 67 | \( 1 + (0.173 + 0.984i)T \) |
| 71 | \( 1 + (-0.104 - 0.994i)T \) |
| 73 | \( 1 + (-0.809 - 0.587i)T \) |
| 79 | \( 1 + (0.438 + 0.898i)T \) |
| 83 | \( 1 + (0.848 - 0.529i)T \) |
| 89 | \( 1 + (0.913 - 0.406i)T \) |
| 97 | \( 1 + (-0.719 + 0.694i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−21.804591578804551561121079822867, −21.21369711884848270243785084954, −20.3528112692367024009851394166, −19.621381103927959656422671067708, −18.80983816997122598827747675998, −17.84208088880148623311258068217, −17.51223410656626833054102884744, −16.687205169120808896039458205990, −14.92771712260636231160638807993, −14.57896007957626810393516461574, −13.76827443656085476747872058096, −13.01422531825473528394764391634, −11.9536867573515698557026877533, −11.19346598108550160501490180666, −10.57247796471414516713392885379, −9.71342997298418473521556607093, −8.91589839906474249703906393596, −7.95368574478785631864234760169, −6.78957354049137921758677244608, −5.773990440222179342157209613916, −4.69360215154020715615694473884, −4.003992603368240428284631684314, −2.568255844240327941926493008862, −2.14579824648605281196900892742, −0.813036955021255117967602421456,
1.28687275962433621824262752739, 2.21825345135983015764359463897, 4.110759548169935036560557537621, 4.62559979850596478717305993169, 5.5860880560801552897034396367, 6.352930164370832550270134872259, 7.30689817600751450362641397425, 8.308978135101205082427281575524, 9.05111060390891325544599143983, 9.6005591700611377818950312935, 10.801489756815660541853329822309, 12.030272970936356484780911860566, 12.737366931469090516565845116810, 13.64783327639712021366622750299, 14.56772512126486057849947163953, 14.83005609660597923310924864348, 16.0430016097197375153711275733, 16.88736123374379388637640364344, 17.52191804443844800879525649007, 17.8435359571550524605615375858, 19.10212189211040325787962947769, 19.885481694526973484705413424825, 21.02846461108835394925755820657, 21.815390015484984617338992533906, 22.13161183949356167879785093931