Properties

Label 1-7e2-49.34-r1-0-0
Degree $1$
Conductor $49$
Sign $-0.648 + 0.761i$
Analytic cond. $5.26578$
Root an. cond. $5.26578$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.900 − 0.433i)2-s + (0.222 + 0.974i)3-s + (0.623 + 0.781i)4-s + (0.222 + 0.974i)5-s + (0.222 − 0.974i)6-s + (−0.222 − 0.974i)8-s + (−0.900 + 0.433i)9-s + (0.222 − 0.974i)10-s + (−0.900 − 0.433i)11-s + (−0.623 + 0.781i)12-s + (0.900 + 0.433i)13-s + (−0.900 + 0.433i)15-s + (−0.222 + 0.974i)16-s + (−0.623 + 0.781i)17-s + 18-s − 19-s + ⋯
L(s)  = 1  + (−0.900 − 0.433i)2-s + (0.222 + 0.974i)3-s + (0.623 + 0.781i)4-s + (0.222 + 0.974i)5-s + (0.222 − 0.974i)6-s + (−0.222 − 0.974i)8-s + (−0.900 + 0.433i)9-s + (0.222 − 0.974i)10-s + (−0.900 − 0.433i)11-s + (−0.623 + 0.781i)12-s + (0.900 + 0.433i)13-s + (−0.900 + 0.433i)15-s + (−0.222 + 0.974i)16-s + (−0.623 + 0.781i)17-s + 18-s − 19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 49 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.648 + 0.761i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 49 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.648 + 0.761i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(1\)
Conductor: \(49\)    =    \(7^{2}\)
Sign: $-0.648 + 0.761i$
Analytic conductor: \(5.26578\)
Root analytic conductor: \(5.26578\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{49} (34, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((1,\ 49,\ (1:\ ),\ -0.648 + 0.761i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.3430338783 + 0.7425322474i\)
\(L(\frac12)\) \(\approx\) \(0.3430338783 + 0.7425322474i\)
\(L(1)\) \(\approx\) \(0.6381898100 + 0.3329432151i\)
\(L(1)\) \(\approx\) \(0.6381898100 + 0.3329432151i\)

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 \)
good2 \( 1 + (0.900 + 0.433i)T \)
3 \( 1 + (-0.222 - 0.974i)T \)
5 \( 1 + (-0.222 - 0.974i)T \)
11 \( 1 + (0.900 + 0.433i)T \)
13 \( 1 + (-0.900 - 0.433i)T \)
17 \( 1 + (0.623 - 0.781i)T \)
19 \( 1 + T \)
23 \( 1 + (-0.623 - 0.781i)T \)
29 \( 1 + (-0.623 + 0.781i)T \)
31 \( 1 + T \)
37 \( 1 + (-0.623 + 0.781i)T \)
41 \( 1 + (-0.222 - 0.974i)T \)
43 \( 1 + (0.222 - 0.974i)T \)
47 \( 1 + (-0.900 - 0.433i)T \)
53 \( 1 + (-0.623 - 0.781i)T \)
59 \( 1 + (-0.222 + 0.974i)T \)
61 \( 1 + (0.623 - 0.781i)T \)
67 \( 1 - T \)
71 \( 1 + (-0.623 - 0.781i)T \)
73 \( 1 + (-0.900 + 0.433i)T \)
79 \( 1 - T \)
83 \( 1 + (-0.900 + 0.433i)T \)
89 \( 1 + (-0.900 + 0.433i)T \)
97 \( 1 + T \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−33.308707025842836179157827816272, −32.08792581785433304386675529324, −30.786828813113829115214818548790, −29.248852173955944215190399537594, −28.65469980739025150032462810622, −27.439005243846592102023208979520, −25.80782201065911640541746108261, −25.18996029158326816353397464534, −24.06053618772629862671926060270, −23.24359749257749210998054267726, −20.743979448449691130826902338024, −20.0438257629569380330635635655, −18.60833122611105934859990377817, −17.78711495775712956310234342298, −16.59544110489997644504699280495, −15.27475485215692547402810999317, −13.609956633092308939403326271100, −12.46071179133927016620165387661, −10.77939776993237889842398255019, −9.01461692871406346610692369953, −8.177389398440013871384527971223, −6.77759266732586358806650115353, −5.3273235709835300239371459186, −2.20600916638274366885652660232, −0.60056917268828823195767373265, 2.450817573925278222369971434790, 3.80439418237328399958543743528, 6.20955800913001390301304853844, 8.028222522368935241349244935339, 9.29711190686766062363123164485, 10.654754976158458194893196228553, 11.13461553563507124338930876297, 13.33379424749684009460849082121, 15.02067574958208697591472212300, 16.042946689603258902231496815826, 17.38213803410187116352609075318, 18.63016350166843136059947531571, 19.70407177138569428942382907089, 21.23512866805905211479305598942, 21.63830618840411725815625821403, 23.26883772544913077802971689232, 25.37862981546304768575928168896, 26.19104724397955325874576107632, 26.8859720372463498207033002235, 28.12129119324467179153034054961, 29.12325160225205358370548240480, 30.45814844011693481021889476712, 31.4456605407810626394234552898, 33.17012068403343072753103560118, 33.98836440294976044649814766948

Graph of the $Z$-function along the critical line