L(s) = 1 | + (−0.173 + 0.984i)3-s + (−0.5 − 0.866i)7-s + (−0.939 − 0.342i)9-s + (−0.5 + 0.866i)11-s + (0.173 + 0.984i)13-s + (0.939 − 0.342i)17-s + (0.939 − 0.342i)21-s + (0.766 − 0.642i)23-s + (0.5 − 0.866i)27-s + (0.939 + 0.342i)29-s + (0.5 + 0.866i)31-s + (−0.766 − 0.642i)33-s + 37-s − 39-s + (0.173 − 0.984i)41-s + ⋯ |
L(s) = 1 | + (−0.173 + 0.984i)3-s + (−0.5 − 0.866i)7-s + (−0.939 − 0.342i)9-s + (−0.5 + 0.866i)11-s + (0.173 + 0.984i)13-s + (0.939 − 0.342i)17-s + (0.939 − 0.342i)21-s + (0.766 − 0.642i)23-s + (0.5 − 0.866i)27-s + (0.939 + 0.342i)29-s + (0.5 + 0.866i)31-s + (−0.766 − 0.642i)33-s + 37-s − 39-s + (0.173 − 0.984i)41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 760 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.776 + 0.630i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 760 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.776 + 0.630i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.3944656954 + 1.111027052i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.3944656954 + 1.111027052i\) |
\(L(1)\) |
\(\approx\) |
\(0.8378230927 + 0.3300919541i\) |
\(L(1)\) |
\(\approx\) |
\(0.8378230927 + 0.3300919541i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 19 | \( 1 \) |
good | 3 | \( 1 + (-0.173 + 0.984i)T \) |
| 7 | \( 1 + (-0.5 - 0.866i)T \) |
| 11 | \( 1 + (-0.5 + 0.866i)T \) |
| 13 | \( 1 + (0.173 + 0.984i)T \) |
| 17 | \( 1 + (0.939 - 0.342i)T \) |
| 23 | \( 1 + (0.766 - 0.642i)T \) |
| 29 | \( 1 + (0.939 + 0.342i)T \) |
| 31 | \( 1 + (0.5 + 0.866i)T \) |
| 37 | \( 1 + T \) |
| 41 | \( 1 + (0.173 - 0.984i)T \) |
| 43 | \( 1 + (-0.766 - 0.642i)T \) |
| 47 | \( 1 + (-0.939 - 0.342i)T \) |
| 53 | \( 1 + (0.766 - 0.642i)T \) |
| 59 | \( 1 + (-0.939 + 0.342i)T \) |
| 61 | \( 1 + (-0.766 + 0.642i)T \) |
| 67 | \( 1 + (0.939 + 0.342i)T \) |
| 71 | \( 1 + (-0.766 - 0.642i)T \) |
| 73 | \( 1 + (-0.173 + 0.984i)T \) |
| 79 | \( 1 + (-0.173 + 0.984i)T \) |
| 83 | \( 1 + (0.5 + 0.866i)T \) |
| 89 | \( 1 + (0.173 + 0.984i)T \) |
| 97 | \( 1 + (0.939 - 0.342i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−21.8536386069584552410212794953, −21.25465879033750973037653271710, −20.070217055658505561251438880035, −19.28476657573392525431195341740, −18.67695465287171585493400188334, −18.05785648445624106641544057959, −17.11243501983613208100942960075, −16.28072911891327087712669289725, −15.36219528823246302248356274370, −14.51767959276159000641420053702, −13.31791013786839266866647009407, −13.01547659784536569057579606475, −12.03435089932030216830649518438, −11.33367736391494739328767709188, −10.31083251288218530349205084226, −9.23866883109826540533004549844, −8.14809006773792958569090606485, −7.787159334384561713140367057196, −6.33649662600876220218052506662, −5.90880188649396856637744431146, −5.0182322915580546011660435447, −3.18150283941278416015868269515, −2.77407192799362910521370786652, −1.346346843592443599052228350477, −0.32841439789373272251460069234,
1.00803088619799472224885324362, 2.61405024684156517339925017930, 3.59220926302952049358816545557, 4.49072622391574939545897631723, 5.17772575736436430224363641439, 6.46356520789533275187944360797, 7.195532890569075366301781775213, 8.40198990478682474273595383671, 9.38654661248258730560427134308, 10.116776385399996770105455477, 10.66748956808420789045490099964, 11.733673505264065624432709998111, 12.5588860982131195725078677280, 13.6955816709394752869038274748, 14.39979015172438732293432951750, 15.26048186308238019795022042161, 16.2184593897995096351911277160, 16.63035335158724832929320295807, 17.48196663401456050996730641122, 18.45368936950662067065116363664, 19.501106972900327310060235197160, 20.237714686193469152816549538383, 21.00588593476273832738472089642, 21.53882621711035677440983213984, 22.72700207062358478083629187113