L(s) = 1 | + (0.5 − 0.866i)3-s + 7-s + (−0.5 − 0.866i)9-s + 11-s + (−0.5 − 0.866i)13-s + (0.5 − 0.866i)17-s + (0.5 − 0.866i)21-s + (−0.5 − 0.866i)23-s − 27-s + (0.5 + 0.866i)29-s − 31-s + (0.5 − 0.866i)33-s + 37-s − 39-s + (−0.5 + 0.866i)41-s + ⋯ |
L(s) = 1 | + (0.5 − 0.866i)3-s + 7-s + (−0.5 − 0.866i)9-s + 11-s + (−0.5 − 0.866i)13-s + (0.5 − 0.866i)17-s + (0.5 − 0.866i)21-s + (−0.5 − 0.866i)23-s − 27-s + (0.5 + 0.866i)29-s − 31-s + (0.5 − 0.866i)33-s + 37-s − 39-s + (−0.5 + 0.866i)41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 760 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.671 - 0.740i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 760 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.671 - 0.740i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.083371243 - 2.444512287i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.083371243 - 2.444512287i\) |
\(L(1)\) |
\(\approx\) |
\(1.253236195 - 0.6747334320i\) |
\(L(1)\) |
\(\approx\) |
\(1.253236195 - 0.6747334320i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 19 | \( 1 \) |
good | 3 | \( 1 + (0.5 - 0.866i)T \) |
| 7 | \( 1 + T \) |
| 11 | \( 1 + T \) |
| 13 | \( 1 + (-0.5 - 0.866i)T \) |
| 17 | \( 1 + (0.5 - 0.866i)T \) |
| 23 | \( 1 + (-0.5 - 0.866i)T \) |
| 29 | \( 1 + (0.5 + 0.866i)T \) |
| 31 | \( 1 - T \) |
| 37 | \( 1 + T \) |
| 41 | \( 1 + (-0.5 + 0.866i)T \) |
| 43 | \( 1 + (0.5 - 0.866i)T \) |
| 47 | \( 1 + (-0.5 - 0.866i)T \) |
| 53 | \( 1 + (-0.5 - 0.866i)T \) |
| 59 | \( 1 + (-0.5 + 0.866i)T \) |
| 61 | \( 1 + (0.5 + 0.866i)T \) |
| 67 | \( 1 + (0.5 + 0.866i)T \) |
| 71 | \( 1 + (0.5 - 0.866i)T \) |
| 73 | \( 1 + (0.5 - 0.866i)T \) |
| 79 | \( 1 + (0.5 - 0.866i)T \) |
| 83 | \( 1 - T \) |
| 89 | \( 1 + (-0.5 - 0.866i)T \) |
| 97 | \( 1 + (0.5 - 0.866i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−22.1772774062475949042586588443, −21.60818515760888629672269191622, −21.07497734919921137183832760181, −20.06301660365770633744876253150, −19.51108344278350719609091760255, −18.60454628589231516985573218519, −17.28490653226167861904067457121, −17.00147112122637071753460517356, −15.92024401865386320263700233552, −15.051776926281850178443118496919, −14.299147526579214309805431916551, −13.98467409149788162346235298563, −12.55804992578038881046125147960, −11.53082352065025917713423315498, −11.008865158326579095013993762643, −9.81635652354755921817831736520, −9.27223876740147955516745050872, −8.26666481282820084519050222431, −7.5945606525354970757955845496, −6.275013267436570020273011040032, −5.220011159402220147045151139602, −4.28550243704398538718712252991, −3.69961100460156123329728795809, −2.304770316932569582344705346264, −1.41404842552821855961222028014,
0.557328899338605542899021140713, 1.50481184035874784298402007112, 2.508053339869431000473862259516, 3.53212384074078471998599292320, 4.744640962931198877978616176574, 5.74769670158128196486636193865, 6.83791225623663239641091496979, 7.58827392749894451331932946441, 8.36787800750783058932628497851, 9.15403782831994206057219801899, 10.22521667475184785481826169142, 11.40393468382208089579925444823, 12.04584124971633623809052464340, 12.81328881159864292260668527079, 13.86350596314504120933929873452, 14.54693362671281941254703179369, 14.96601211117103976901173283269, 16.37151814179798940002867464693, 17.22507728642477760341453266239, 18.09272011221747421560910513192, 18.46249222678983685999054047657, 19.71496096228397111333021377888, 20.12333328363680580804670787742, 20.90268378103941565144010051128, 21.969886153316328847771651776973