L(s) = 1 | + (0.939 + 0.342i)3-s + (−0.5 + 0.866i)7-s + (0.766 + 0.642i)9-s + (−0.5 − 0.866i)11-s + (−0.939 + 0.342i)13-s + (−0.766 + 0.642i)17-s + (−0.766 + 0.642i)21-s + (0.173 − 0.984i)23-s + (0.5 + 0.866i)27-s + (−0.766 − 0.642i)29-s + (0.5 − 0.866i)31-s + (−0.173 − 0.984i)33-s + 37-s − 39-s + (−0.939 − 0.342i)41-s + ⋯ |
L(s) = 1 | + (0.939 + 0.342i)3-s + (−0.5 + 0.866i)7-s + (0.766 + 0.642i)9-s + (−0.5 − 0.866i)11-s + (−0.939 + 0.342i)13-s + (−0.766 + 0.642i)17-s + (−0.766 + 0.642i)21-s + (0.173 − 0.984i)23-s + (0.5 + 0.866i)27-s + (−0.766 − 0.642i)29-s + (0.5 − 0.866i)31-s + (−0.173 − 0.984i)33-s + 37-s − 39-s + (−0.939 − 0.342i)41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 760 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.0389 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 760 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.0389 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8448518149 - 0.8125507430i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8448518149 - 0.8125507430i\) |
\(L(1)\) |
\(\approx\) |
\(1.124331890 + 0.09720331869i\) |
\(L(1)\) |
\(\approx\) |
\(1.124331890 + 0.09720331869i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 19 | \( 1 \) |
good | 3 | \( 1 + (0.939 + 0.342i)T \) |
| 7 | \( 1 + (-0.5 + 0.866i)T \) |
| 11 | \( 1 + (-0.5 - 0.866i)T \) |
| 13 | \( 1 + (-0.939 + 0.342i)T \) |
| 17 | \( 1 + (-0.766 + 0.642i)T \) |
| 23 | \( 1 + (0.173 - 0.984i)T \) |
| 29 | \( 1 + (-0.766 - 0.642i)T \) |
| 31 | \( 1 + (0.5 - 0.866i)T \) |
| 37 | \( 1 + T \) |
| 41 | \( 1 + (-0.939 - 0.342i)T \) |
| 43 | \( 1 + (-0.173 - 0.984i)T \) |
| 47 | \( 1 + (0.766 + 0.642i)T \) |
| 53 | \( 1 + (0.173 - 0.984i)T \) |
| 59 | \( 1 + (0.766 - 0.642i)T \) |
| 61 | \( 1 + (-0.173 + 0.984i)T \) |
| 67 | \( 1 + (-0.766 - 0.642i)T \) |
| 71 | \( 1 + (-0.173 - 0.984i)T \) |
| 73 | \( 1 + (0.939 + 0.342i)T \) |
| 79 | \( 1 + (0.939 + 0.342i)T \) |
| 83 | \( 1 + (0.5 - 0.866i)T \) |
| 89 | \( 1 + (-0.939 + 0.342i)T \) |
| 97 | \( 1 + (-0.766 + 0.642i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−22.43600352586324879011209698765, −21.51211762634870619267167758091, −20.47950955049724805113703984692, −19.99134472111678459726881960538, −19.4713001586885929375926973749, −18.358725203756673908038085733514, −17.70688053370482112744980288595, −16.76470812099952595610948054964, −15.688207704158264858906926771260, −15.06074054763529512266312569209, −14.17152654200287982979523869838, −13.31277278746914475114115016015, −12.83590281048732973028046085658, −11.84451363051946689568090503436, −10.55859279503964428440216842497, −9.78148759132474854959267393555, −9.16479316874838742887036914308, −7.90339229826255717812045334226, −7.284491335066516816763605213819, −6.67123515891727729239028203536, −5.11994268666764010981723492135, −4.21011428210012241696738589415, −3.15247943241335997377170459918, −2.33946701127199466750738151849, −1.13776072394566437804676516430,
0.22695842251833919422555996860, 2.117095413395978509068750787778, 2.64055387732146904685514022176, 3.71933897465196804039234463316, 4.70586470441179150711248611083, 5.77571099789958555888531108159, 6.780685507996017923192705686126, 7.929136627486816163308100704973, 8.63834892649614600248924565085, 9.380108135600123209088274647998, 10.186238588974056521352390164, 11.15528987872970042321968807399, 12.26223079157281932954391018109, 13.113612883636007440191842961220, 13.77237498136265641439557907084, 14.92751942166345482452527928675, 15.24982546633288729853694110252, 16.24263402496084067246318109496, 16.93501564071788821035672026617, 18.2635393364757066256815264787, 19.02382431109347879013241953706, 19.42072381845357119886930890589, 20.47393164560745500870150164081, 21.18930854666121096916189799086, 22.05976726390959926241099195939