L(s) = 1 | + (−0.766 + 0.642i)3-s + (−0.5 + 0.866i)7-s + (0.173 − 0.984i)9-s + (−0.5 − 0.866i)11-s + (0.766 + 0.642i)13-s + (−0.173 − 0.984i)17-s + (−0.173 − 0.984i)21-s + (−0.939 + 0.342i)23-s + (0.5 + 0.866i)27-s + (−0.173 + 0.984i)29-s + (0.5 − 0.866i)31-s + (0.939 + 0.342i)33-s + 37-s − 39-s + (0.766 − 0.642i)41-s + ⋯ |
L(s) = 1 | + (−0.766 + 0.642i)3-s + (−0.5 + 0.866i)7-s + (0.173 − 0.984i)9-s + (−0.5 − 0.866i)11-s + (0.766 + 0.642i)13-s + (−0.173 − 0.984i)17-s + (−0.173 − 0.984i)21-s + (−0.939 + 0.342i)23-s + (0.5 + 0.866i)27-s + (−0.173 + 0.984i)29-s + (0.5 − 0.866i)31-s + (0.939 + 0.342i)33-s + 37-s − 39-s + (0.766 − 0.642i)41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 760 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.513 + 0.858i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 760 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.513 + 0.858i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.4483597821 + 0.7903507931i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4483597821 + 0.7903507931i\) |
\(L(1)\) |
\(\approx\) |
\(0.7210810264 + 0.2115959292i\) |
\(L(1)\) |
\(\approx\) |
\(0.7210810264 + 0.2115959292i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 19 | \( 1 \) |
good | 3 | \( 1 + (-0.766 + 0.642i)T \) |
| 7 | \( 1 + (-0.5 + 0.866i)T \) |
| 11 | \( 1 + (-0.5 - 0.866i)T \) |
| 13 | \( 1 + (0.766 + 0.642i)T \) |
| 17 | \( 1 + (-0.173 - 0.984i)T \) |
| 23 | \( 1 + (-0.939 + 0.342i)T \) |
| 29 | \( 1 + (-0.173 + 0.984i)T \) |
| 31 | \( 1 + (0.5 - 0.866i)T \) |
| 37 | \( 1 + T \) |
| 41 | \( 1 + (0.766 - 0.642i)T \) |
| 43 | \( 1 + (0.939 + 0.342i)T \) |
| 47 | \( 1 + (0.173 - 0.984i)T \) |
| 53 | \( 1 + (-0.939 + 0.342i)T \) |
| 59 | \( 1 + (0.173 + 0.984i)T \) |
| 61 | \( 1 + (0.939 - 0.342i)T \) |
| 67 | \( 1 + (-0.173 + 0.984i)T \) |
| 71 | \( 1 + (0.939 + 0.342i)T \) |
| 73 | \( 1 + (-0.766 + 0.642i)T \) |
| 79 | \( 1 + (-0.766 + 0.642i)T \) |
| 83 | \( 1 + (0.5 - 0.866i)T \) |
| 89 | \( 1 + (0.766 + 0.642i)T \) |
| 97 | \( 1 + (-0.173 - 0.984i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−22.24605098875268417926506122758, −21.10751091862960329059728473603, −20.225883186267290232741303648175, −19.498270558757494171163202721090, −18.64958385871306177570996808278, −17.652995498988567959039949012697, −17.3981630119187592424314603112, −16.23409151565913960123936844454, −15.70902247976167413899073710257, −14.475934255025410441886211185242, −13.44156347465827999057076964708, −12.892681949337525112527599449004, −12.22347993954060500909829045811, −11.01369266350031060148059313887, −10.48299937330604634200476959008, −9.65811648438673519660092032117, −8.10173574972657820662181781279, −7.63640214619462253302535159019, −6.48178203876427430121140308338, −6.00021442554967283646530852485, −4.74959575905133835234462784460, −3.88614540952396741168312324143, −2.500276816423421237904812811019, −1.34772778422372352289145194422, −0.3129038487283388362338395071,
0.8374469805871667978804411704, 2.4527715058657415568643062708, 3.48645856649650619405383526501, 4.45305744273411885526903080650, 5.638749601656674386222859418087, 5.99317652062991817837335627269, 7.082664358442009498737343668420, 8.44361155794849776896971418199, 9.22843273059753140861093557850, 9.947912124131493913719049447697, 11.0869937710253221888513855219, 11.542657178031760667985217726340, 12.4665012981779713242340667794, 13.411998472662316865953850018812, 14.36977149292476651519265413129, 15.48599387827755485784333510956, 16.08679563507125761809940035201, 16.46453502514672794967624243281, 17.71458986270573391435306076104, 18.424088146520876772482431301557, 19.010047127698489180138147361208, 20.267635842209318407497268680261, 21.069678293620060432393284261174, 21.78112905857109052219116102602, 22.3153460297333289466984117610