Properties

Label 1-760-760.189-r1-0-0
Degree $1$
Conductor $760$
Sign $1$
Analytic cond. $81.6733$
Root an. cond. $81.6733$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 7-s + 9-s − 11-s − 13-s − 17-s + 21-s − 23-s − 27-s + 29-s − 31-s + 33-s − 37-s + 39-s − 41-s + 43-s − 47-s + 49-s + 51-s − 53-s + 59-s − 61-s − 63-s − 67-s + 69-s − 71-s − 73-s + ⋯
L(s)  = 1  − 3-s − 7-s + 9-s − 11-s − 13-s − 17-s + 21-s − 23-s − 27-s + 29-s − 31-s + 33-s − 37-s + 39-s − 41-s + 43-s − 47-s + 49-s + 51-s − 53-s + 59-s − 61-s − 63-s − 67-s + 69-s − 71-s − 73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 760 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 760 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(1\)
Conductor: \(760\)    =    \(2^{3} \cdot 5 \cdot 19\)
Sign: $1$
Analytic conductor: \(81.6733\)
Root analytic conductor: \(81.6733\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: $\chi_{760} (189, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((1,\ 760,\ (1:\ ),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.1940667160\)
\(L(\frac12)\) \(\approx\) \(0.1940667160\)
\(L(1)\) \(\approx\) \(0.4558301715\)
\(L(1)\) \(\approx\) \(0.4558301715\)

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
19 \( 1 \)
good3 \( 1 - T \)
7 \( 1 - T \)
11 \( 1 - T \)
13 \( 1 - T \)
17 \( 1 - T \)
23 \( 1 - T \)
29 \( 1 + T \)
31 \( 1 - T \)
37 \( 1 - T \)
41 \( 1 - T \)
43 \( 1 + T \)
47 \( 1 - T \)
53 \( 1 - T \)
59 \( 1 + T \)
61 \( 1 - T \)
67 \( 1 - T \)
71 \( 1 - T \)
73 \( 1 - T \)
79 \( 1 - T \)
83 \( 1 + T \)
89 \( 1 - T \)
97 \( 1 + T \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−22.18432215020578754869144461365, −21.754762626835860721602805284237, −20.64716790513832311604197751391, −19.67888134087127380156812712304, −18.95332399330775690183931803404, −18.00247212888284023108677415469, −17.45894811985101010879317874770, −16.396107529633552132209319054958, −15.91689049062292527363933691402, −15.1509251429281546778423391439, −13.83266654155961066709529134864, −12.94134696130773909946777007026, −12.396724913759713120709422175467, −11.51093813704719103665162943609, −10.41371512977792968971054446464, −10.0341108939233834093982022763, −8.94649854679741853521001378083, −7.64155254922616779666729064856, −6.859461508817495173325301165531, −6.03926490753840902449851126109, −5.13482595553884075251814039693, −4.28149275155778167953035824748, −3.01096133806057204720642993207, −1.89308665968452178482368322707, −0.215803916150669430936475482342, 0.215803916150669430936475482342, 1.89308665968452178482368322707, 3.01096133806057204720642993207, 4.28149275155778167953035824748, 5.13482595553884075251814039693, 6.03926490753840902449851126109, 6.859461508817495173325301165531, 7.64155254922616779666729064856, 8.94649854679741853521001378083, 10.0341108939233834093982022763, 10.41371512977792968971054446464, 11.51093813704719103665162943609, 12.396724913759713120709422175467, 12.94134696130773909946777007026, 13.83266654155961066709529134864, 15.1509251429281546778423391439, 15.91689049062292527363933691402, 16.396107529633552132209319054958, 17.45894811985101010879317874770, 18.00247212888284023108677415469, 18.95332399330775690183931803404, 19.67888134087127380156812712304, 20.64716790513832311604197751391, 21.754762626835860721602805284237, 22.18432215020578754869144461365

Graph of the $Z$-function along the critical line