L(s) = 1 | − 3-s − 7-s + 9-s − 11-s − 13-s − 17-s + 21-s − 23-s − 27-s + 29-s − 31-s + 33-s − 37-s + 39-s − 41-s + 43-s − 47-s + 49-s + 51-s − 53-s + 59-s − 61-s − 63-s − 67-s + 69-s − 71-s − 73-s + ⋯ |
L(s) = 1 | − 3-s − 7-s + 9-s − 11-s − 13-s − 17-s + 21-s − 23-s − 27-s + 29-s − 31-s + 33-s − 37-s + 39-s − 41-s + 43-s − 47-s + 49-s + 51-s − 53-s + 59-s − 61-s − 63-s − 67-s + 69-s − 71-s − 73-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 760 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 760 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.1940667160\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.1940667160\) |
\(L(1)\) |
\(\approx\) |
\(0.4558301715\) |
\(L(1)\) |
\(\approx\) |
\(0.4558301715\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 19 | \( 1 \) |
good | 3 | \( 1 - T \) |
| 7 | \( 1 - T \) |
| 11 | \( 1 - T \) |
| 13 | \( 1 - T \) |
| 17 | \( 1 - T \) |
| 23 | \( 1 - T \) |
| 29 | \( 1 + T \) |
| 31 | \( 1 - T \) |
| 37 | \( 1 - T \) |
| 41 | \( 1 - T \) |
| 43 | \( 1 + T \) |
| 47 | \( 1 - T \) |
| 53 | \( 1 - T \) |
| 59 | \( 1 + T \) |
| 61 | \( 1 - T \) |
| 67 | \( 1 - T \) |
| 71 | \( 1 - T \) |
| 73 | \( 1 - T \) |
| 79 | \( 1 - T \) |
| 83 | \( 1 + T \) |
| 89 | \( 1 - T \) |
| 97 | \( 1 + T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−22.18432215020578754869144461365, −21.754762626835860721602805284237, −20.64716790513832311604197751391, −19.67888134087127380156812712304, −18.95332399330775690183931803404, −18.00247212888284023108677415469, −17.45894811985101010879317874770, −16.396107529633552132209319054958, −15.91689049062292527363933691402, −15.1509251429281546778423391439, −13.83266654155961066709529134864, −12.94134696130773909946777007026, −12.396724913759713120709422175467, −11.51093813704719103665162943609, −10.41371512977792968971054446464, −10.0341108939233834093982022763, −8.94649854679741853521001378083, −7.64155254922616779666729064856, −6.859461508817495173325301165531, −6.03926490753840902449851126109, −5.13482595553884075251814039693, −4.28149275155778167953035824748, −3.01096133806057204720642993207, −1.89308665968452178482368322707, −0.215803916150669430936475482342,
0.215803916150669430936475482342, 1.89308665968452178482368322707, 3.01096133806057204720642993207, 4.28149275155778167953035824748, 5.13482595553884075251814039693, 6.03926490753840902449851126109, 6.859461508817495173325301165531, 7.64155254922616779666729064856, 8.94649854679741853521001378083, 10.0341108939233834093982022763, 10.41371512977792968971054446464, 11.51093813704719103665162943609, 12.396724913759713120709422175467, 12.94134696130773909946777007026, 13.83266654155961066709529134864, 15.1509251429281546778423391439, 15.91689049062292527363933691402, 16.396107529633552132209319054958, 17.45894811985101010879317874770, 18.00247212888284023108677415469, 18.95332399330775690183931803404, 19.67888134087127380156812712304, 20.64716790513832311604197751391, 21.754762626835860721602805284237, 22.18432215020578754869144461365