Properties

Label 1-740-740.739-r1-0-0
Degree $1$
Conductor $740$
Sign $1$
Analytic cond. $79.5240$
Root an. cond. $79.5240$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 7-s + 9-s − 11-s + 13-s + 17-s + 19-s + 21-s − 23-s + 27-s − 29-s + 31-s − 33-s + 39-s + 41-s − 43-s + 47-s + 49-s + 51-s − 53-s + 57-s + 59-s − 61-s + 63-s + 67-s − 69-s − 71-s + ⋯
L(s)  = 1  + 3-s + 7-s + 9-s − 11-s + 13-s + 17-s + 19-s + 21-s − 23-s + 27-s − 29-s + 31-s − 33-s + 39-s + 41-s − 43-s + 47-s + 49-s + 51-s − 53-s + 57-s + 59-s − 61-s + 63-s + 67-s − 69-s − 71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 740 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 740 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(1\)
Conductor: \(740\)    =    \(2^{2} \cdot 5 \cdot 37\)
Sign: $1$
Analytic conductor: \(79.5240\)
Root analytic conductor: \(79.5240\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: $\chi_{740} (739, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((1,\ 740,\ (1:\ ),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(4.024828474\)
\(L(\frac12)\) \(\approx\) \(4.024828474\)
\(L(1)\) \(\approx\) \(1.847795884\)
\(L(1)\) \(\approx\) \(1.847795884\)

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
37 \( 1 \)
good3 \( 1 + T \)
7 \( 1 + T \)
11 \( 1 - T \)
13 \( 1 + T \)
17 \( 1 + T \)
19 \( 1 + T \)
23 \( 1 - T \)
29 \( 1 - T \)
31 \( 1 + T \)
41 \( 1 + T \)
43 \( 1 - T \)
47 \( 1 + T \)
53 \( 1 - T \)
59 \( 1 + T \)
61 \( 1 - T \)
67 \( 1 + T \)
71 \( 1 - T \)
73 \( 1 - T \)
79 \( 1 + T \)
83 \( 1 + T \)
89 \( 1 - T \)
97 \( 1 + T \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−22.10804340502595935379554231123, −21.11501261602350066424459549324, −20.75330403800363487594316085430, −20.10765219690657550802013353644, −18.892443841273588638263793659068, −18.39452137300464468934155810046, −17.675615537164991943728238642560, −16.33601432837091218967262439638, −15.68256188058293782948980387684, −14.857193260390856817510099094657, −14.000938028270049419325970631785, −13.509885475750767114926773380353, −12.465793742121436646355292547892, −11.48262465214826261683201770409, −10.498988939174473576185374591470, −9.72270893605356534504178189151, −8.65609584924049958060732861309, −7.90952109231711077770895871241, −7.4584815401961153755703104182, −5.96004625420480685413151656039, −5.01255761355168080389425410429, −3.95432358287188581693804662797, −3.04239274097160140685190621316, −1.97390147237529426831933216849, −1.01811297534319381391507871328, 1.01811297534319381391507871328, 1.97390147237529426831933216849, 3.04239274097160140685190621316, 3.95432358287188581693804662797, 5.01255761355168080389425410429, 5.96004625420480685413151656039, 7.4584815401961153755703104182, 7.90952109231711077770895871241, 8.65609584924049958060732861309, 9.72270893605356534504178189151, 10.498988939174473576185374591470, 11.48262465214826261683201770409, 12.465793742121436646355292547892, 13.509885475750767114926773380353, 14.000938028270049419325970631785, 14.857193260390856817510099094657, 15.68256188058293782948980387684, 16.33601432837091218967262439638, 17.675615537164991943728238642560, 18.39452137300464468934155810046, 18.892443841273588638263793659068, 20.10765219690657550802013353644, 20.75330403800363487594316085430, 21.11501261602350066424459549324, 22.10804340502595935379554231123

Graph of the $Z$-function along the critical line