L(s) = 1 | + (−0.936 + 0.349i)3-s + (−0.989 − 0.142i)5-s + (−0.800 + 0.599i)7-s + (0.755 − 0.654i)9-s + (−0.142 − 0.989i)11-s + (0.349 + 0.936i)13-s + (0.977 − 0.212i)15-s + (−0.540 − 0.841i)17-s + (−0.997 − 0.0713i)19-s + (0.540 − 0.841i)21-s + (0.0713 − 0.997i)23-s + (0.959 + 0.281i)25-s + (−0.479 + 0.877i)27-s + (0.599 + 0.800i)29-s + (0.0713 + 0.997i)31-s + ⋯ |
L(s) = 1 | + (−0.936 + 0.349i)3-s + (−0.989 − 0.142i)5-s + (−0.800 + 0.599i)7-s + (0.755 − 0.654i)9-s + (−0.142 − 0.989i)11-s + (0.349 + 0.936i)13-s + (0.977 − 0.212i)15-s + (−0.540 − 0.841i)17-s + (−0.997 − 0.0713i)19-s + (0.540 − 0.841i)21-s + (0.0713 − 0.997i)23-s + (0.959 + 0.281i)25-s + (−0.479 + 0.877i)27-s + (0.599 + 0.800i)29-s + (0.0713 + 0.997i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 712 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.891 + 0.453i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 712 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.891 + 0.453i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.03286959676 + 0.1371674546i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.03286959676 + 0.1371674546i\) |
\(L(1)\) |
\(\approx\) |
\(0.5449876317 + 0.03143241592i\) |
\(L(1)\) |
\(\approx\) |
\(0.5449876317 + 0.03143241592i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 89 | \( 1 \) |
good | 3 | \( 1 + (-0.936 + 0.349i)T \) |
| 5 | \( 1 + (-0.989 - 0.142i)T \) |
| 7 | \( 1 + (-0.800 + 0.599i)T \) |
| 11 | \( 1 + (-0.142 - 0.989i)T \) |
| 13 | \( 1 + (0.349 + 0.936i)T \) |
| 17 | \( 1 + (-0.540 - 0.841i)T \) |
| 19 | \( 1 + (-0.997 - 0.0713i)T \) |
| 23 | \( 1 + (0.0713 - 0.997i)T \) |
| 29 | \( 1 + (0.599 + 0.800i)T \) |
| 31 | \( 1 + (0.0713 + 0.997i)T \) |
| 37 | \( 1 + (0.707 - 0.707i)T \) |
| 41 | \( 1 + (0.349 - 0.936i)T \) |
| 43 | \( 1 + (0.599 - 0.800i)T \) |
| 47 | \( 1 + (0.909 - 0.415i)T \) |
| 53 | \( 1 + (0.909 + 0.415i)T \) |
| 59 | \( 1 + (0.936 + 0.349i)T \) |
| 61 | \( 1 + (-0.877 - 0.479i)T \) |
| 67 | \( 1 + (-0.415 + 0.909i)T \) |
| 71 | \( 1 + (-0.989 + 0.142i)T \) |
| 73 | \( 1 + (0.654 - 0.755i)T \) |
| 79 | \( 1 + (-0.755 - 0.654i)T \) |
| 83 | \( 1 + (0.977 + 0.212i)T \) |
| 97 | \( 1 + (-0.142 + 0.989i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−22.45210903557200065938715804279, −21.35857051552395602964488490523, −20.19470941912467930886740128454, −19.55319633021532791148640182241, −18.8892268977621856436415707072, −17.83143313675737650335884316960, −17.22455953986203410367711997156, −16.36197874349708115024121917904, −15.47976375149185660104455197961, −15.0160599631547304120706319863, −13.345133653202720532082815609972, −12.900367854466844122832307925694, −12.11913383406871861215468465025, −11.14794340413422190503020626516, −10.49582899623364150836367770354, −9.68528047553434137563400755711, −8.142150575850449757144429450064, −7.52325189920286764913793867892, −6.61308682151427183657494180130, −5.89912138707854070390862502615, −4.502624480116016144277460000258, −3.97461953471079895188992206193, −2.60178799103526436411025260023, −1.10939913311968233920420964723, −0.06051911597728286679548567945,
0.77988628391782788025613492663, 2.58708666740315676211320902059, 3.74802718053478650881874835938, 4.495849978085740979579905649010, 5.55565301244170853921680295812, 6.50369079435085722751050143731, 7.12774163682175785643882536494, 8.7492592412954627118810801335, 8.99302889403139811909210313658, 10.50222843249099604506062059931, 11.02846942800120265261289159151, 12.001607000951466731249927319153, 12.44727613000114109860604297206, 13.52564664778382732660504791639, 14.730220645808417414664570727021, 15.72432440306525258138703380000, 16.20534053913363070182573024232, 16.64674400991012693074036646787, 17.93281392716816658918579033971, 18.80357363879815849726259534224, 19.22754459953613452052814859360, 20.353366917384146693767793375362, 21.36706832011558351691506966206, 21.95707326663932828322970804152, 22.78682419690946197521891550384