L(s) = 1 | + (−0.5 − 0.866i)2-s + (−0.939 − 0.342i)3-s + (−0.5 + 0.866i)4-s + (0.173 + 0.984i)5-s + (0.173 + 0.984i)6-s + (0.173 − 0.984i)7-s + 8-s + (0.766 + 0.642i)9-s + (0.766 − 0.642i)10-s + 11-s + (0.766 − 0.642i)12-s + (−0.5 − 0.866i)13-s + (−0.939 + 0.342i)14-s + (0.173 − 0.984i)15-s + (−0.5 − 0.866i)16-s + 17-s + ⋯ |
L(s) = 1 | + (−0.5 − 0.866i)2-s + (−0.939 − 0.342i)3-s + (−0.5 + 0.866i)4-s + (0.173 + 0.984i)5-s + (0.173 + 0.984i)6-s + (0.173 − 0.984i)7-s + 8-s + (0.766 + 0.642i)9-s + (0.766 − 0.642i)10-s + 11-s + (0.766 − 0.642i)12-s + (−0.5 − 0.866i)13-s + (−0.939 + 0.342i)14-s + (0.173 − 0.984i)15-s + (−0.5 − 0.866i)16-s + 17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 703 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.569 - 0.822i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 703 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.569 - 0.822i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7438882806 - 0.3898162307i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7438882806 - 0.3898162307i\) |
\(L(1)\) |
\(\approx\) |
\(0.6551032891 - 0.2570436981i\) |
\(L(1)\) |
\(\approx\) |
\(0.6551032891 - 0.2570436981i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 19 | \( 1 \) |
| 37 | \( 1 \) |
good | 2 | \( 1 + (-0.5 - 0.866i)T \) |
| 3 | \( 1 + (-0.939 - 0.342i)T \) |
| 5 | \( 1 + (0.173 + 0.984i)T \) |
| 7 | \( 1 + (0.173 - 0.984i)T \) |
| 11 | \( 1 + T \) |
| 13 | \( 1 + (-0.5 - 0.866i)T \) |
| 17 | \( 1 + T \) |
| 23 | \( 1 + (0.173 + 0.984i)T \) |
| 29 | \( 1 + (0.173 + 0.984i)T \) |
| 31 | \( 1 + (-0.5 - 0.866i)T \) |
| 41 | \( 1 + (0.173 + 0.984i)T \) |
| 43 | \( 1 + (0.766 + 0.642i)T \) |
| 47 | \( 1 + (0.766 - 0.642i)T \) |
| 53 | \( 1 + (0.173 - 0.984i)T \) |
| 59 | \( 1 + (-0.5 + 0.866i)T \) |
| 61 | \( 1 + (-0.5 + 0.866i)T \) |
| 67 | \( 1 + (-0.5 - 0.866i)T \) |
| 71 | \( 1 + (0.766 - 0.642i)T \) |
| 73 | \( 1 + (0.173 - 0.984i)T \) |
| 79 | \( 1 + (0.766 - 0.642i)T \) |
| 83 | \( 1 + (0.173 + 0.984i)T \) |
| 89 | \( 1 + (0.766 + 0.642i)T \) |
| 97 | \( 1 + (0.173 - 0.984i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−22.88271260230189654094074465532, −22.012466365164512769195398600270, −21.360658261992964350703001945683, −20.34525693183250569836450228027, −19.115212410846523868708472602838, −18.62516640864947802715360637255, −17.39548502571933704258133217185, −17.12595142696747264308011631828, −16.29179776054769662464670989155, −15.71004529158914864768513005945, −14.698516929062921844725468294169, −13.96118938326225743967002151307, −12.43959286748490232672761689683, −12.13048447074904635461461649012, −10.993276547235904717065985845014, −9.810661513108570691566741944, −9.235477671266370706089976918839, −8.56716179004455157365544841790, −7.3233464878892898736978014343, −6.29131966467814731847759780070, −5.65111632671712975862481154769, −4.838981161523105617702904280611, −4.091923541218159963474976461785, −1.908702736523557588000290136390, −0.8552201022335725698034102405,
0.84801473798581975700766165520, 1.76702480275242934634710708699, 3.14284959502130256680536205307, 3.97587581448790536665967028972, 5.16287002657573214679046438007, 6.341239469830091043989314103099, 7.42754746734756066255754420357, 7.697176055080115970503178210334, 9.41769691182612841051305823669, 10.182074827640559582495278893917, 10.79057986655742196502785013773, 11.49991876384383641801660200745, 12.27121626618598002092769642083, 13.234066701929404268440321894859, 14.0147656185881922920057206030, 14.98520040731696619203446315759, 16.50809263624198154133594973371, 16.9867225540444812069871946520, 17.81337772731929794064833483405, 18.251165240506875753584483449262, 19.38615697154280131005632295099, 19.73473492724025349548178904622, 20.96442721062337590885179580209, 21.785733132234441298148690245947, 22.50859540007148211977735742787