Properties

Label 1-7-7.6-r1-0-0
Degree $1$
Conductor $7$
Sign $1$
Analytic cond. $0.752254$
Root an. cond. $0.752254$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s + 4-s − 5-s − 6-s + 8-s + 9-s − 10-s + 11-s − 12-s − 13-s + 15-s + 16-s − 17-s + 18-s − 19-s − 20-s + 22-s + 23-s − 24-s + 25-s − 26-s − 27-s + 29-s + 30-s − 31-s + 32-s + ⋯
L(s)  = 1  + 2-s − 3-s + 4-s − 5-s − 6-s + 8-s + 9-s − 10-s + 11-s − 12-s − 13-s + 15-s + 16-s − 17-s + 18-s − 19-s − 20-s + 22-s + 23-s − 24-s + 25-s − 26-s − 27-s + 29-s + 30-s − 31-s + 32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(1\)
Conductor: \(7\)
Sign: $1$
Analytic conductor: \(0.752254\)
Root analytic conductor: \(0.752254\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: $\chi_{7} (6, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((1,\ 7,\ (1:\ ),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.146585666\)
\(L(\frac12)\) \(\approx\) \(1.146585666\)
\(L(1)\) \(\approx\) \(1.187410411\)
\(L(1)\) \(\approx\) \(1.187410411\)

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 \)
good2 \( 1 + T \)
3 \( 1 - T \)
5 \( 1 - T \)
11 \( 1 + T \)
13 \( 1 - T \)
17 \( 1 - T \)
19 \( 1 - T \)
23 \( 1 + T \)
29 \( 1 + T \)
31 \( 1 - T \)
37 \( 1 + T \)
41 \( 1 - T \)
43 \( 1 + T \)
47 \( 1 - T \)
53 \( 1 + T \)
59 \( 1 - T \)
61 \( 1 - T \)
67 \( 1 + T \)
71 \( 1 + T \)
73 \( 1 - T \)
79 \( 1 + T \)
83 \( 1 - T \)
89 \( 1 - T \)
97 \( 1 - T \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−50.98309943494790941040256869584, −49.2358942624162595582001378897, −47.29858534027669804962753511398, −46.19432742740581606201873969732, −43.93185428742714565723041221515, −42.30485758764265058072877014058, −40.7103286516539188858032460596, −39.48257874666192172268872121810, −38.36463733603136596844459180378, −35.311847458977969626587230969278, −34.11124078303733952175233551521, −32.4758875915420758078446454007, −30.72189964454757558763990410272, −29.17887966636347069628776553811, −27.36147751900128252344458972943, −24.49884755535632897308961801424, −23.16297179973657863840493856183, −21.89991370331832248627181534368, −19.61187805669003102874335093663, −16.802876475728853982349899698677, −15.11288225874376865962836973665, −12.48960334303313423775824003050, −11.16018454311952965510181826588, −6.84549171249137726783979779478, −4.47573828372868313197462848719, 4.47573828372868313197462848719, 6.84549171249137726783979779478, 11.16018454311952965510181826588, 12.48960334303313423775824003050, 15.11288225874376865962836973665, 16.802876475728853982349899698677, 19.61187805669003102874335093663, 21.89991370331832248627181534368, 23.16297179973657863840493856183, 24.49884755535632897308961801424, 27.36147751900128252344458972943, 29.17887966636347069628776553811, 30.72189964454757558763990410272, 32.4758875915420758078446454007, 34.11124078303733952175233551521, 35.311847458977969626587230969278, 38.36463733603136596844459180378, 39.48257874666192172268872121810, 40.7103286516539188858032460596, 42.30485758764265058072877014058, 43.93185428742714565723041221515, 46.19432742740581606201873969732, 47.29858534027669804962753511398, 49.2358942624162595582001378897, 50.98309943494790941040256869584

Graph of the $Z$-function along the critical line