L(s) = 1 | + (−0.5 + 0.866i)2-s + (0.5 − 0.866i)3-s + (−0.5 − 0.866i)4-s + (0.5 + 0.866i)6-s + (−0.5 − 0.866i)7-s + 8-s + (−0.5 − 0.866i)9-s + (0.5 − 0.866i)11-s − 12-s + 14-s + (−0.5 + 0.866i)16-s + (0.5 + 0.866i)17-s + 18-s + (0.5 + 0.866i)19-s − 21-s + (0.5 + 0.866i)22-s + ⋯ |
L(s) = 1 | + (−0.5 + 0.866i)2-s + (0.5 − 0.866i)3-s + (−0.5 − 0.866i)4-s + (0.5 + 0.866i)6-s + (−0.5 − 0.866i)7-s + 8-s + (−0.5 − 0.866i)9-s + (0.5 − 0.866i)11-s − 12-s + 14-s + (−0.5 + 0.866i)16-s + (0.5 + 0.866i)17-s + 18-s + (0.5 + 0.866i)19-s − 21-s + (0.5 + 0.866i)22-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 65 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.859 - 0.511i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 65 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.859 - 0.511i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7397294789 - 0.2033022946i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7397294789 - 0.2033022946i\) |
\(L(1)\) |
\(\approx\) |
\(0.8615431271 - 0.07142336024i\) |
\(L(1)\) |
\(\approx\) |
\(0.8615431271 - 0.07142336024i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + (-0.5 + 0.866i)T \) |
| 3 | \( 1 + (0.5 - 0.866i)T \) |
| 7 | \( 1 + (-0.5 - 0.866i)T \) |
| 11 | \( 1 + (0.5 - 0.866i)T \) |
| 17 | \( 1 + (0.5 + 0.866i)T \) |
| 19 | \( 1 + (0.5 + 0.866i)T \) |
| 23 | \( 1 + (0.5 - 0.866i)T \) |
| 29 | \( 1 + (-0.5 + 0.866i)T \) |
| 31 | \( 1 - T \) |
| 37 | \( 1 + (-0.5 + 0.866i)T \) |
| 41 | \( 1 + (0.5 - 0.866i)T \) |
| 43 | \( 1 + (0.5 + 0.866i)T \) |
| 47 | \( 1 + T \) |
| 53 | \( 1 - T \) |
| 59 | \( 1 + (0.5 + 0.866i)T \) |
| 61 | \( 1 + (-0.5 - 0.866i)T \) |
| 67 | \( 1 + (-0.5 + 0.866i)T \) |
| 71 | \( 1 + (0.5 + 0.866i)T \) |
| 73 | \( 1 + T \) |
| 79 | \( 1 + T \) |
| 83 | \( 1 + T \) |
| 89 | \( 1 + (0.5 - 0.866i)T \) |
| 97 | \( 1 + (-0.5 - 0.866i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−31.931838172887132543553732553464, −31.25409942088549943287289144686, −30.1176969499113893282653362193, −28.67050653898517170160896826381, −27.938040484989343999651129768016, −26.99427117655407755663138195946, −25.79710475586722500485421136026, −25.11599739901318771044225735625, −22.76678966384344708026310499989, −22.005693239134584814645050574365, −20.95047284321697220644949707841, −19.9537484764539592303203859057, −19.01024462837097913332402781084, −17.65934902009074894839215348339, −16.32654415060813490864372342196, −15.17486855215578344134637551703, −13.68494927072188841445705365709, −12.27140601524550044445399492009, −11.09165021212674927744468449862, −9.51869533284427186397475579409, −9.218958991203555385808000578483, −7.52092548514733843129534188107, −5.10242005017280119988957607028, −3.57974579525258156591908144132, −2.32916536639200035698130087984,
1.210959795943881323931123406180, 3.64563703007843048773639466111, 5.89999741126418323913572070000, 6.977087557221896131402583925960, 8.07731086762784508591832862088, 9.24567377828367583036663847316, 10.717135568236501818882424948809, 12.67843535907272444793774636930, 13.88801967373127014738295979548, 14.65329108398390780721306226677, 16.35339752359155581511534278521, 17.20200269255370000659513240923, 18.60001004866666635876061559180, 19.33380059720804007928000975869, 20.429456317864161682630273493915, 22.48248423516712644496143776719, 23.61189173952552000061638028280, 24.39094605331804964737406262899, 25.50181715303365113399553453765, 26.34397087702428861375534466041, 27.34194552840490146191943076635, 28.93296387063081063004390541344, 29.75492422760048571427717966189, 31.13615424100686174506551447538, 32.32122488271559241175413688024