L(s) = 1 | − 2-s − i·3-s + 4-s + i·6-s + 7-s − 8-s − 9-s − i·11-s − i·12-s − 14-s + 16-s − i·17-s + 18-s − i·19-s − i·21-s + i·22-s + ⋯ |
L(s) = 1 | − 2-s − i·3-s + 4-s + i·6-s + 7-s − 8-s − 9-s − i·11-s − i·12-s − 14-s + 16-s − i·17-s + 18-s − i·19-s − i·21-s + i·22-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 65 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.256 - 0.966i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 65 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.256 - 0.966i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5007106209 - 0.3850950802i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5007106209 - 0.3850950802i\) |
\(L(1)\) |
\(\approx\) |
\(0.6640832105 - 0.2788922552i\) |
\(L(1)\) |
\(\approx\) |
\(0.6640832105 - 0.2788922552i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 13 | \( 1 \) |
good | 2 | \( 1 \) |
| 3 | \( 1 + T \) |
| 7 | \( 1 - iT \) |
| 11 | \( 1 + T \) |
| 17 | \( 1 + iT \) |
| 19 | \( 1 + T \) |
| 23 | \( 1 - T \) |
| 29 | \( 1 - T \) |
| 31 | \( 1 \) |
| 37 | \( 1 - iT \) |
| 41 | \( 1 - iT \) |
| 43 | \( 1 \) |
| 47 | \( 1 - T \) |
| 53 | \( 1 \) |
| 59 | \( 1 + T \) |
| 61 | \( 1 - iT \) |
| 67 | \( 1 + T \) |
| 71 | \( 1 - iT \) |
| 73 | \( 1 \) |
| 79 | \( 1 - iT \) |
| 83 | \( 1 + iT \) |
| 89 | \( 1 + iT \) |
| 97 | \( 1 + iT \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−32.83464544947416798699274911046, −31.21913530806918119424962596199, −30.15239040496786688047065859009, −28.59814602509814965501133360762, −27.911933406690416219126382056313, −27.024642417720435325147919490030, −26.068559525935960797395663246953, −25.02066129554710157707091319914, −23.668920024403687869577075863870, −22.10894051241267769939160957856, −20.77503404198064944124117459031, −20.34578671879663131741981647670, −18.74287011815065263454366112002, −17.46105696323826205907981828116, −16.70394823246946134318187349488, −15.264813331690032622674358455792, −14.59861819638937969882156363231, −12.205330178238784827862086597864, −10.94727595991280446345894760445, −10.062268463447794471904268025957, −8.79213008903843006160667357763, −7.67165167473902755047292313780, −5.79342123429460273874711398720, −4.124288019892223720923175334407, −2.083377172677040642588252046808,
1.19024827837864578093383102802, 2.76013178671656001836929738052, 5.571123454991324166945579873497, 7.05833111841817324229645553461, 8.061151023977091595045472171268, 9.144434859242659003394154651307, 11.1053147860069023646740601318, 11.68957281867834683254489995876, 13.40130778856483353647607558575, 14.71662538906158652516936461520, 16.29044267968787996800131849517, 17.54073840974350960378563727845, 18.25410997036735979216616513600, 19.32290869737854477500205544876, 20.353802335422245810570587288588, 21.63279645959031702879765902051, 23.574421141530289292542170587940, 24.39301439530940939436099046787, 25.227539824379268763306537338852, 26.51769589754611111861941645706, 27.546117285616165884659340608290, 28.69450856460709711517765745237, 29.71828693628592911911572516652, 30.44179436937825679538995550200, 31.759400371670797167788059875231