L(s) = 1 | + (−0.5 − 0.866i)2-s + (0.5 − 0.866i)3-s + (−0.5 + 0.866i)4-s + (0.5 − 0.866i)5-s − 6-s + (0.5 − 0.866i)7-s + 8-s + (−0.5 − 0.866i)9-s − 10-s − 11-s + (0.5 + 0.866i)12-s + (−0.5 + 0.866i)13-s − 14-s + (−0.5 − 0.866i)15-s + (−0.5 − 0.866i)16-s + ⋯ |
L(s) = 1 | + (−0.5 − 0.866i)2-s + (0.5 − 0.866i)3-s + (−0.5 + 0.866i)4-s + (0.5 − 0.866i)5-s − 6-s + (0.5 − 0.866i)7-s + 8-s + (−0.5 − 0.866i)9-s − 10-s − 11-s + (0.5 + 0.866i)12-s + (−0.5 + 0.866i)13-s − 14-s + (−0.5 − 0.866i)15-s + (−0.5 − 0.866i)16-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 629 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.621 + 0.783i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 629 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.621 + 0.783i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(-0.3449197763 - 0.7139512546i\) |
\(L(\frac12)\) |
\(\approx\) |
\(-0.3449197763 - 0.7139512546i\) |
\(L(1)\) |
\(\approx\) |
\(0.4677847841 - 0.6849017559i\) |
\(L(1)\) |
\(\approx\) |
\(0.4677847841 - 0.6849017559i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 17 | \( 1 \) |
| 37 | \( 1 \) |
good | 2 | \( 1 + (-0.5 - 0.866i)T \) |
| 3 | \( 1 + (0.5 - 0.866i)T \) |
| 5 | \( 1 + (0.5 - 0.866i)T \) |
| 7 | \( 1 + (0.5 - 0.866i)T \) |
| 11 | \( 1 - T \) |
| 13 | \( 1 + (-0.5 + 0.866i)T \) |
| 19 | \( 1 + (-0.5 + 0.866i)T \) |
| 23 | \( 1 - T \) |
| 29 | \( 1 - T \) |
| 31 | \( 1 - T \) |
| 41 | \( 1 + (0.5 - 0.866i)T \) |
| 43 | \( 1 + T \) |
| 47 | \( 1 + T \) |
| 53 | \( 1 + (-0.5 - 0.866i)T \) |
| 59 | \( 1 + (-0.5 - 0.866i)T \) |
| 61 | \( 1 + (0.5 - 0.866i)T \) |
| 67 | \( 1 + (-0.5 + 0.866i)T \) |
| 71 | \( 1 + (0.5 - 0.866i)T \) |
| 73 | \( 1 - T \) |
| 79 | \( 1 + (0.5 - 0.866i)T \) |
| 83 | \( 1 + (-0.5 - 0.866i)T \) |
| 89 | \( 1 + (-0.5 - 0.866i)T \) |
| 97 | \( 1 - T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−23.61902034536632680026290188412, −22.43137492469960109283293012657, −22.031689588314766690541580213677, −21.14464242076694422966355940383, −20.12904000975524555077341505869, −19.204141822230348483416992713873, −18.30194108154241547990854721495, −17.80208552159498955260628663513, −16.83516752922950059002419401267, −15.70525451619285489060964133210, −15.24054063406258616211905972546, −14.652798431293517011247964134353, −13.844425927224846487107833801602, −12.8576031349363344044622342436, −11.11325930082579653967062956003, −10.58399683828652211174420876448, −9.71083670521877679512790868516, −8.98732285955095636338830031219, −7.98921303829621483782682220689, −7.361225537796162053727176605056, −5.82655091645966625928256957096, −5.45078219397071170096556133534, −4.3390835331479144929626290243, −2.81471677092666559410045323110, −2.10360621021304705162076912264,
0.40245759363355038734234942856, 1.78435557150533939659389165229, 2.097650738096730210890050547254, 3.64355185235802831669922888693, 4.54036947108564370890890586178, 5.79142942994410185117878228165, 7.29989606443714216826953400824, 7.86099379645841199659280455605, 8.719109074233301143508625632301, 9.55924868419618869675774727766, 10.447597903123340284956315382593, 11.48897648761321806577022978977, 12.482800337648786805213671908271, 12.95250139308007258600242017758, 13.870372762633280715286077468173, 14.39296828887523773316611565037, 16.13053354852534562766951667570, 16.98232973631281634157973035835, 17.588670045584677664835983430614, 18.414076003684806335902262802861, 19.15890016073370519467956196273, 20.07958437866693610026546183715, 20.67886595903404660798110742978, 21.109453997693638938097270221896, 22.2348828681745906204140465109