L(s) = 1 | + (0.5 − 0.866i)2-s + (−0.866 + 0.5i)3-s + (−0.5 − 0.866i)4-s + (−0.866 + 0.5i)5-s + i·6-s + (0.866 − 0.5i)7-s − 8-s + (0.5 − 0.866i)9-s + i·10-s + i·11-s + (0.866 + 0.5i)12-s + (−0.5 − 0.866i)13-s − i·14-s + (0.5 − 0.866i)15-s + (−0.5 + 0.866i)16-s + ⋯ |
L(s) = 1 | + (0.5 − 0.866i)2-s + (−0.866 + 0.5i)3-s + (−0.5 − 0.866i)4-s + (−0.866 + 0.5i)5-s + i·6-s + (0.866 − 0.5i)7-s − 8-s + (0.5 − 0.866i)9-s + i·10-s + i·11-s + (0.866 + 0.5i)12-s + (−0.5 − 0.866i)13-s − i·14-s + (0.5 − 0.866i)15-s + (−0.5 + 0.866i)16-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 629 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.00779 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 629 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.00779 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7064799125 - 0.7120064256i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7064799125 - 0.7120064256i\) |
\(L(1)\) |
\(\approx\) |
\(0.8217134608 - 0.3569735387i\) |
\(L(1)\) |
\(\approx\) |
\(0.8217134608 - 0.3569735387i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 17 | \( 1 \) |
| 37 | \( 1 \) |
good | 2 | \( 1 + (0.5 - 0.866i)T \) |
| 3 | \( 1 + (-0.866 + 0.5i)T \) |
| 5 | \( 1 + (-0.866 + 0.5i)T \) |
| 7 | \( 1 + (0.866 - 0.5i)T \) |
| 11 | \( 1 + iT \) |
| 13 | \( 1 + (-0.5 - 0.866i)T \) |
| 19 | \( 1 + (0.5 + 0.866i)T \) |
| 23 | \( 1 + iT \) |
| 29 | \( 1 - iT \) |
| 31 | \( 1 - iT \) |
| 41 | \( 1 + (0.866 - 0.5i)T \) |
| 43 | \( 1 - T \) |
| 47 | \( 1 + T \) |
| 53 | \( 1 + (0.5 - 0.866i)T \) |
| 59 | \( 1 + (0.5 - 0.866i)T \) |
| 61 | \( 1 + (0.866 - 0.5i)T \) |
| 67 | \( 1 + (-0.5 - 0.866i)T \) |
| 71 | \( 1 + (-0.866 + 0.5i)T \) |
| 73 | \( 1 - iT \) |
| 79 | \( 1 + (0.866 - 0.5i)T \) |
| 83 | \( 1 + (0.5 - 0.866i)T \) |
| 89 | \( 1 + (-0.5 + 0.866i)T \) |
| 97 | \( 1 - iT \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−23.594342921105549612856601210091, −22.416959555002247616816330140110, −21.79141622456737328098712016357, −21.0778446865725962836563755671, −19.7641699642258909362615886963, −18.74467900589735600263300133549, −18.11212634590288520618885968834, −17.1638281967049955092873971595, −16.39993052150647204044248261265, −15.94323733275357195890411088105, −14.84805955195032622134870015703, −14.01553846470975388571961845754, −13.05716354492735793044570936377, −12.12273946382357393214797301327, −11.701766992697385805224118371617, −10.836975172788062376498310424089, −8.987444435210674652787038442929, −8.415617834844879128204563453698, −7.43291484310363219735976569284, −6.74842962296377247028122406128, −5.58142739286482354448494025346, −4.92467303717738759776076085685, −4.19000196980379710337210306916, −2.70437221138482594789518243837, −1.01181263529798645072385210246,
0.618644256391683156486560385898, 1.99884214278705974045650355327, 3.45291281137216038544575592692, 4.17565576839644200263427479990, 4.95125580004245670481208085025, 5.82999441205842613208077616564, 7.154916947973842780645462682104, 7.98865984455209318112039499243, 9.61233883077414321754581352018, 10.23518770741081625605127732757, 10.9933955206298015571604415073, 11.77072051255448328885795015915, 12.229618268772450238170216681, 13.35343027091698624516409891528, 14.63034275550606037995469984924, 15.041874597725438262010998323598, 15.84834747563238892075067839745, 17.226713413294521980186198282462, 17.82299899115061817829051748401, 18.62656360444992110138956179433, 19.69160380708694080839736388594, 20.49101026748078895652206118314, 20.99845501967281924052096332570, 22.18215609631438203492467402452, 22.63317637920690573803886871380