Properties

Label 1-615-615.614-r1-0-0
Degree $1$
Conductor $615$
Sign $1$
Analytic cond. $66.0909$
Root an. cond. $66.0909$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 7-s + 8-s + 11-s + 13-s + 14-s + 16-s − 17-s − 19-s + 22-s + 23-s + 26-s + 28-s + 29-s + 31-s + 32-s − 34-s − 37-s − 38-s − 43-s + 44-s + 46-s − 47-s + 49-s + 52-s − 53-s + ⋯
L(s)  = 1  + 2-s + 4-s + 7-s + 8-s + 11-s + 13-s + 14-s + 16-s − 17-s − 19-s + 22-s + 23-s + 26-s + 28-s + 29-s + 31-s + 32-s − 34-s − 37-s − 38-s − 43-s + 44-s + 46-s − 47-s + 49-s + 52-s − 53-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 615 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 615 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(1\)
Conductor: \(615\)    =    \(3 \cdot 5 \cdot 41\)
Sign: $1$
Analytic conductor: \(66.0909\)
Root analytic conductor: \(66.0909\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: $\chi_{615} (614, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((1,\ 615,\ (1:\ ),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(5.619269431\)
\(L(\frac12)\) \(\approx\) \(5.619269431\)
\(L(1)\) \(\approx\) \(2.533624852\)
\(L(1)\) \(\approx\) \(2.533624852\)

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
41 \( 1 \)
good2 \( 1 + T \)
7 \( 1 + T \)
11 \( 1 + T \)
13 \( 1 + T \)
17 \( 1 - T \)
19 \( 1 - T \)
23 \( 1 + T \)
29 \( 1 + T \)
31 \( 1 + T \)
37 \( 1 - T \)
43 \( 1 - T \)
47 \( 1 - T \)
53 \( 1 - T \)
59 \( 1 - T \)
61 \( 1 + T \)
67 \( 1 + T \)
71 \( 1 + T \)
73 \( 1 - T \)
79 \( 1 - T \)
83 \( 1 + T \)
89 \( 1 + T \)
97 \( 1 + T \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−22.9627144167636503580645466835, −21.92113818107795163130253471334, −21.2643754268928962797330323191, −20.59413305847937764974932264620, −19.72769620136849630979295298997, −18.88040953728257141726088211663, −17.58763812297515179692909755442, −17.03454257684956110220989531196, −15.86869911418098927554072549286, −15.16170839650892102872040617298, −14.36831338409247584226633899767, −13.65578986617786536566740442331, −12.79979123421597211007991673260, −11.7348110520082273485832271024, −11.19344066339408606433914522204, −10.384106536231546951107814700279, −8.84802356120396068534814696483, −8.14844615699236324786648536713, −6.78181727845435514348532504866, −6.314791415131720872800289180369, −4.985766782935828270759130967467, −4.357216259352329297097837985664, −3.35372609427092611083212962605, −2.0659711880217313023649907774, −1.17513953369242433096991836101, 1.17513953369242433096991836101, 2.0659711880217313023649907774, 3.35372609427092611083212962605, 4.357216259352329297097837985664, 4.985766782935828270759130967467, 6.314791415131720872800289180369, 6.78181727845435514348532504866, 8.14844615699236324786648536713, 8.84802356120396068534814696483, 10.384106536231546951107814700279, 11.19344066339408606433914522204, 11.7348110520082273485832271024, 12.79979123421597211007991673260, 13.65578986617786536566740442331, 14.36831338409247584226633899767, 15.16170839650892102872040617298, 15.86869911418098927554072549286, 17.03454257684956110220989531196, 17.58763812297515179692909755442, 18.88040953728257141726088211663, 19.72769620136849630979295298997, 20.59413305847937764974932264620, 21.2643754268928962797330323191, 21.92113818107795163130253471334, 22.9627144167636503580645466835

Graph of the $Z$-function along the critical line