L(s) = 1 | + (−0.5 − 0.866i)2-s + 3-s + (−0.5 + 0.866i)4-s + (−0.5 − 0.866i)5-s + (−0.5 − 0.866i)6-s + (−0.5 − 0.866i)7-s + 8-s + 9-s + (−0.5 + 0.866i)10-s + 11-s + (−0.5 + 0.866i)12-s + (−0.5 − 0.866i)13-s + (−0.5 + 0.866i)14-s + (−0.5 − 0.866i)15-s + (−0.5 − 0.866i)16-s + (−0.5 + 0.866i)17-s + ⋯ |
L(s) = 1 | + (−0.5 − 0.866i)2-s + 3-s + (−0.5 + 0.866i)4-s + (−0.5 − 0.866i)5-s + (−0.5 − 0.866i)6-s + (−0.5 − 0.866i)7-s + 8-s + 9-s + (−0.5 + 0.866i)10-s + 11-s + (−0.5 + 0.866i)12-s + (−0.5 − 0.866i)13-s + (−0.5 + 0.866i)14-s + (−0.5 − 0.866i)15-s + (−0.5 − 0.866i)16-s + (−0.5 + 0.866i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 61 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.0213 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 61 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.0213 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5916381300 - 0.6044088587i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5916381300 - 0.6044088587i\) |
\(L(1)\) |
\(\approx\) |
\(0.8079329434 - 0.4961503306i\) |
\(L(1)\) |
\(\approx\) |
\(0.8079329434 - 0.4961503306i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 61 | \( 1 \) |
good | 2 | \( 1 + (-0.5 - 0.866i)T \) |
| 3 | \( 1 + T \) |
| 5 | \( 1 + (-0.5 - 0.866i)T \) |
| 7 | \( 1 + (-0.5 - 0.866i)T \) |
| 11 | \( 1 + T \) |
| 13 | \( 1 + (-0.5 - 0.866i)T \) |
| 17 | \( 1 + (-0.5 + 0.866i)T \) |
| 19 | \( 1 + (-0.5 + 0.866i)T \) |
| 23 | \( 1 + T \) |
| 29 | \( 1 + (-0.5 + 0.866i)T \) |
| 31 | \( 1 + (-0.5 + 0.866i)T \) |
| 37 | \( 1 + T \) |
| 41 | \( 1 + T \) |
| 43 | \( 1 + (-0.5 - 0.866i)T \) |
| 47 | \( 1 + (-0.5 + 0.866i)T \) |
| 53 | \( 1 + T \) |
| 59 | \( 1 + (-0.5 - 0.866i)T \) |
| 67 | \( 1 + (-0.5 - 0.866i)T \) |
| 71 | \( 1 + (-0.5 + 0.866i)T \) |
| 73 | \( 1 + (-0.5 + 0.866i)T \) |
| 79 | \( 1 + (-0.5 - 0.866i)T \) |
| 83 | \( 1 + (-0.5 - 0.866i)T \) |
| 89 | \( 1 + T \) |
| 97 | \( 1 + (-0.5 + 0.866i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−32.82975803053727387215686764395, −31.72143489784037926172869209759, −31.02359903877429984528605660969, −29.54070568254777746955166205059, −27.96212734108874054596461712265, −26.89666436704410662926573769520, −26.15337693423439675395352167939, −25.13490943514034267394366413689, −24.29421379594717280075357689034, −22.77019385383249582309188474141, −21.74108351437040238648104239787, −19.706347272197092488281626733046, −19.137076518533790416768537994577, −18.18021521938183410165258827092, −16.47405153626704325893512285373, −15.19584657111259492259256410243, −14.71187088931571768763326609404, −13.37873363200355781688158435610, −11.4404523107845653887103214409, −9.597018313227289565621270943754, −8.91030542722195412769384214472, −7.364354476297206476628795997476, −6.489227180496968559879100752333, −4.29700410299232839592910764281, −2.47099081751344251375657455374,
1.38715168122094925969059728356, 3.387973917757168832598348089817, 4.33094573657499334774251614185, 7.296891966722697399634078253987, 8.458910098254525333914508465157, 9.444681038240238680660926089304, 10.698284438614819671483454127346, 12.49935234433871057763511382642, 13.12286409118076065033085831922, 14.66149038343365584590602505173, 16.345702719358568942869242671991, 17.33601982044404216945392917780, 19.10962079349383845884442788240, 19.86764054344346141753970632253, 20.40470329232722230340647515635, 21.722623679089190046879205330888, 23.15093036444211428131358296205, 24.70682138019908647821401226929, 25.73407052036152546333017836659, 27.04909731746764861612684530269, 27.51274532280447904608924038998, 29.073094114268846475067897618002, 30.05347748444335830996872545628, 31.018745735794106776256289135781, 32.12337883953066162817471499867