L(s) = 1 | + (0.629 − 0.777i)2-s + (−0.777 + 0.629i)3-s + (−0.207 − 0.978i)4-s + i·6-s + (−0.284 + 0.958i)7-s + (−0.891 − 0.453i)8-s + (0.207 − 0.978i)9-s + (0.958 + 0.284i)11-s + (0.777 + 0.629i)12-s + (−0.999 − 0.0261i)13-s + (0.566 + 0.824i)14-s + (−0.913 + 0.406i)16-s + (−0.972 − 0.233i)17-s + (−0.629 − 0.777i)18-s + (0.824 + 0.566i)19-s + ⋯ |
L(s) = 1 | + (0.629 − 0.777i)2-s + (−0.777 + 0.629i)3-s + (−0.207 − 0.978i)4-s + i·6-s + (−0.284 + 0.958i)7-s + (−0.891 − 0.453i)8-s + (0.207 − 0.978i)9-s + (0.958 + 0.284i)11-s + (0.777 + 0.629i)12-s + (−0.999 − 0.0261i)13-s + (0.566 + 0.824i)14-s + (−0.913 + 0.406i)16-s + (−0.972 − 0.233i)17-s + (−0.629 − 0.777i)18-s + (0.824 + 0.566i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 6025 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.877 - 0.480i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6025 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.877 - 0.480i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.285530135 - 0.3290410706i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.285530135 - 0.3290410706i\) |
\(L(1)\) |
\(\approx\) |
\(0.9599401196 - 0.2189727614i\) |
\(L(1)\) |
\(\approx\) |
\(0.9599401196 - 0.2189727614i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 241 | \( 1 \) |
good | 2 | \( 1 + (0.629 - 0.777i)T \) |
| 3 | \( 1 + (-0.777 + 0.629i)T \) |
| 7 | \( 1 + (-0.284 + 0.958i)T \) |
| 11 | \( 1 + (0.958 + 0.284i)T \) |
| 13 | \( 1 + (-0.999 - 0.0261i)T \) |
| 17 | \( 1 + (-0.972 - 0.233i)T \) |
| 19 | \( 1 + (0.824 + 0.566i)T \) |
| 23 | \( 1 + (0.0784 - 0.996i)T \) |
| 29 | \( 1 + (-0.629 + 0.777i)T \) |
| 31 | \( 1 + (-0.725 - 0.688i)T \) |
| 37 | \( 1 + (0.333 + 0.942i)T \) |
| 41 | \( 1 + (0.707 - 0.707i)T \) |
| 43 | \( 1 + (0.233 - 0.972i)T \) |
| 47 | \( 1 + (0.156 - 0.987i)T \) |
| 53 | \( 1 + (0.358 + 0.933i)T \) |
| 59 | \( 1 + (-0.998 - 0.0523i)T \) |
| 61 | \( 1 + (-0.453 + 0.891i)T \) |
| 67 | \( 1 + (-0.933 - 0.358i)T \) |
| 71 | \( 1 + (0.878 - 0.477i)T \) |
| 73 | \( 1 + (0.522 + 0.852i)T \) |
| 79 | \( 1 + (0.707 - 0.707i)T \) |
| 83 | \( 1 + (0.104 + 0.994i)T \) |
| 89 | \( 1 + (0.878 - 0.477i)T \) |
| 97 | \( 1 + (-0.913 - 0.406i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−17.57646382598981127852790438856, −17.142871060842521773617896822782, −16.40726413716385843099585329218, −16.05216194451642961031380441985, −15.11543631371869304633451975361, −14.350237466043292925130181660170, −13.80117898137782687008110121926, −13.19685056089246033066272134860, −12.69661929006337905016818669524, −11.92617334690794287693532038343, −11.29488667437757768028977460697, −10.822186356011367422961790241293, −9.50552282746249709469407250283, −9.23381342914489293013941566221, −7.84560377623718411081366266375, −7.5900057109087550844121208367, −6.83465837749188019722029325022, −6.41283569228217053318226482116, −5.65316358959376775797223106506, −4.8743402497074166635712235909, −4.28509496838589533808812396445, −3.53327689649170227270527014355, −2.591395224098815061525459679712, −1.5792976742584456838722005548, −0.5301586572757395662819874800,
0.54266867240262217048056125686, 1.68255197717293471944599788892, 2.42939059078746043894043612032, 3.256689881600124411402885085184, 4.034000536921721872866508907536, 4.652082563484055399087017654510, 5.32984144819347928767549873689, 5.90424785325478649491347706075, 6.597615133982155876446345642947, 7.28926731715260999355009897638, 8.81146757469644069414519051308, 9.22147546859296871765882557960, 9.752500206835856237103575673027, 10.48738572964073128727147841046, 11.1767024034060511418880055021, 11.83062716685144569331310177778, 12.296691278289860506999112845604, 12.66492483637335718400818132361, 13.71971894691085602659971930404, 14.46133370147024219470645296225, 15.189965237128034630742598412, 15.315504863844834309122589814701, 16.429908212337366672192337806194, 16.84134884057316881692337911952, 17.83198301133634950746071728864